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1.	 Introduction
The speed control of direct current (DC) motors remains a fundamental challenge in industrial automation, robotics, 
and energy-efficient drive systems. Achieving high precision, fast transient response, and low energy consumption 
requires robust control techniques capable of handling system non-linearities and parameter uncertainties (Nesri 
et al., 2024).

Traditionally, DC motor control relies on integer-order modelling and classical PID controllers, valued for their 
simplicity and ease of implementation. Standard tuning methods—such as the (Ziegler and Nichols 1942; Cohen 
and Coon 1953) procedures—provide acceptable transient and steady-state responses for many applications. 
However, these empirical techniques often lead to performance trade-offs, especially in systems with time-varying 
parameters, non-linear inductive dynamics, or high precision requirements.

To overcome these limitations, recent research has focused on heuristic and intelligent optimisation algorithms 
for PID and fractional-order proportional-integral-derivative (FOPID) tuning (Idir et al., 2022). For example, particle 
swarm optimisation (PSO) and genetic algorithm (GA) have demonstrated faster convergence and improved 
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Abstract: �� DC motor speed control is fundamental in modern industrial and robotic systems, where high precision, robustness and energy 
efficiency are required. Conventional integer-order Proportional–Integral–Derivative (PID) controllers often fail to capture the non-
linearities and parameter variations inherent in real DC motors. This study proposes a control framework combining fractional-
order (FO) system identification with an optimised fractional-order proportional-integral-derivative (FOPID) controller. The five FOPID 
parameters are optimised using four metaheuristic algorithms: Grey Wolf Optimizer (GWO), Firefly Algorithm (FA), artificial bee 
colony (ABC) and ant colony optimisation (ACO). Experimental validation on a MATLAB/Simulink  R2024 (The MathWorks, Inc., 
Natick, MA, USA), an Arduino board, and a DC motor platform demonstrates that the particle swarm optimisation (PSO) FOPID 
controller achieves a settling time of 1.08 s with 2.00% overshoot and a control effort of 1.8 V/√s. Compared to the extended Ziegler–
Nichols tuned FOPID, the PSO approach achieves 98.57% faster settling while maintaining comparable overshoot and demonstrating 
superior energy efficiency. Among the metaheuristic algorithms tested, PSO demonstrates the best overall performance with the 
lowest identification error and the most energy-efficient control effort. These results confirm the superiority of the metaheuristic 
optimisation approach over conventional tuning methods in terms of dynamic response, precision, and robustness for fractional-
order control systems.
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robustness compared with classical tuning methods  (Nasir & Khadraoui, 2021; Martinez-Patiño et al., 2023; Sultan 
et al., 2022). Other approaches, such as artificial bee colony (ABC) and ant colony optimisation (ACO), have shown 
strong global search capabilities for non-linear control systems (Idir et al., 2022). These techniques fall under the 
umbrella of artificial intelligence (AI)-based control, enabling adaptive and energy-aware performance optimisation. 
Unlike conventional approaches that apply FOPID controllers to predefined models, this study introduces a novel 
integrated methodology combining fractional-order (FO) system identification with metaheuristic optimisation to 
simultaneously achieve an accurate plant model and an optimal controller tuning.

In parallel, fractional calculus (Abu-Shady, M. and Kaabar, 2021) has emerged as a powerful mathematical 
framework for modelling and control. Unlike integer-order models, FO models can capture memory and hereditary 
effects found in physical systems, such as viscoelastic materials, diffusion processes, and electromagnetic actuators 
(Li and Rosenfeld, 2021; Meneses and Arrieta, 2022). Integrating FO modelling into control design leads to more 
accurate system representations and improved control precision.

The  (FOPID) controller, first introduced by Podlubny (1999), generalises the classical PID by introducing 
two additional parameters—the integral order λ and derivative order µ—that allow finer tuning of transient and 
steady-state behaviours. Several studies (Martinez-Patiño et  al., 2023; Sultan et  al., 2022) have shown that 
FOPID controllers tuned via heuristic algorithms outperform traditional PID in terms of overshoot, settling time, and 
robustness (Pandey and Murray 2022). Nevertheless, few works combine FO system identification with heuristic 
optimisation and even fewer analyse energy efficiency during stabilisation, which is crucial for embedded and 
sustainable control applications.

In this context, the study proposes an integrated approach for DC motor speed control based on:

1.	 FO system identification, treating the motor as a “black box” to accurately capture its dynamic response;
2.	 FOPID controller design and optimisation using four heuristic algorithms (PSO, GA, ABC and ACO);
3.	� Performance evaluation focusing not only on classical indices (ITAE, overshoot and settling time) but also on 

energy consumption during stabilisation;
4.	� Experimental validation on a real DC motor using MATLAB/Simulink–Arduino Uno integration to confirm 

practical feasibility.

The main contribution of this work is the implementation of a high-performance practical control solution for 
a real DC motor treated as a black-box system. By developing a FOPID controller optimised via metaheuristic 
algorithms – particularly PSO – we demonstrate exceptional performance metrics, including 98.57% faster 
settling time and minimal control effort of 2.4 V, achieving superior precision and energy efficiency compared to 
conventional methods.

The rest of this study is organised as follows: Section 2 reviews fractional calculus fundamentals and the structure 
of the FOPID controller. Section 3 presents the identification and optimisation methodology for both integer-order 
and FO models. Section 4 describes the tuning of the five FOPID parameters via heuristic algorithms. Section 5 
provides the simulation and experimental results, and Section 6 concludes with final remarks and future research 
perspectives.

In summary, this study contributes to the state of the art by (I) bridging the gap between FO modelling and 
heuristic optimisation, (II) emphasising energy-aware FOPID control and (III) validating the approach experimentally, 
thereby situating it firmly within and beyond existing classical and AI-based control frameworks.

2.	 Calculus for Fractional Orders
In 1695, Leibniz corresponded with J. Wallis and J. Bernoulli regarding a prospective approach to differentiation 
involving non-integer orders of m. The definition is presented as follows:

( ) =
m

nt m nt
m

d e n e
dt

	 (1)

Fractional calculus employs the fundamental operator 0
mt D t, defined over the interval from 0 t  to t, where m 

represents a non-integer order. The continuous integro-differential operator is expressed as follows:
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generally, ∈m R. τ  is the ring of complex numbers, and ( )R m  symbolise the real part of a complex number.
Fractional integro-differential operators are represented in various forms within the literature. Among these, the 

Riemann–Liouville definition stands out as one of the most commonly adopted approximations for fractional integro-
differential operations.

Let ∈m C with ( ) 0>R m , 0   ∈t R and f  be a locally integrable function defined on [ [0 ,   +∞t . The following formula 
defines the Riemann–Liouville integral of order m of f  with lower bound 0t :

0
0

RL 11( ) ( ) ( )
( )

τ τ τ−= −
Γ ∫

tm m
t t t

I f t t f d
m

	 (3)

with 0 >t t  and ( )τ m  is Euler’s gamma function.

1

0
( ) , ( ) 0 >

∞ − −Γ = ℜ∫ m ym y e dy m � (4)

The Riemann–Liouville fractional derivative of order m for a function f , with lower bound 0t , is defined by the 
following expression:

0
0

11( ) ( ) ( )
( )

τ τ τ− −= −
Γ − ∫

n tRL m n m
t t n t

dD f t t f d
n m dt

	 (5)

where ( )1− < <n m n; n is an integer.
Approximating FO transfer functions is essential for their practical implementation. Typically, FO transfer 

functions are converted to integer-order forms to facilitate simulations for controller design. The literature describes 
several analogue approximation methods, including those proposed by Carlson, Matsuda, Oustaloup and Charef. 
The simplified Oustaloup approximation, presented in Eq. (6), defines the FO differentiator as follows (Baranowski 
et al., 2015):
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The Oustaloup approximation (Oustaloup 1991) defines the gain K  of the FO differentiator as a constant, 
ensuring a unit gain at 1 /rad s. The approximation involves M  poles and zeros, with their respective frequencies at 
the thn  instant denoted as z,nω  (zeros) and p,nω ​ (poles). These frequencies are valid within the specified frequency 
range of the system, defined by the lower bound ωl and upper bound ωh. The approximate frequencies of the poles 
and zeros are determined using recursive equations, with the relevant parameters provided in Eqs (7)—(11).

,1  ω ω η=z l 	 (7)

, ,  ω ω γ=p n z n 	 (8)

, 1 ,  ω ω η+ =z n p n 	 (9)
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The Oustaloup approximation method facilitates the design of both FO systems and controllers.
Eq. (12) mathematically defines the FOPID controller, where both the derivative order and the integral order are 

constrained to values between 0 and 1. The formulation of the FOPID controller is described as follows:

( )( )
( )

µ

λ= = + + sI
FOPID p d

U s KC s K K
E s s

	 (12)

When 1λ µ= = , the FOPID controller reduces to a conventional PID controller. The FOPID controller introduces two 
additional tuning parameters—the integral order λ and the derivative order µ, which enhances system performance 
by offering greater precision and flexibility in control design.

3.	 Identification
System identification can be approached through various methods. The simplified Oustaloup approximation, shown 
in Eq. (6), defines the FO differentiator (Baranowski et al., 2015) as follows:

The transfer function serves as a key representation of the process, as follows:
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Optimisation techniques are increasingly employed for tuning controller parameters (Pradhan et al., 2019). This 
study adopts four distinct algorithms to optimise the parameters of a FOPID controller, each leveraging unique 
principles to enhance system performance:

1.	� GA: This method mirrors evolutionary processes, iteratively improving a population of randomly generated 
solutions (Patra and Patra, 2020). Each generation undergoes variation processes, such as mutation and 
crossover, to produce new solutions. The quality of each solution is evaluated using a fitness function, 
guiding the algorithm towards optimal parameter sets.

2.	� ABC: Introduced by Karaboga in 2005, the ABC algorithm draws inspiration from the foraging behaviour of 
bees (Mohammed and Abdulla, 2018). The colony size represents the number of potential solutions, with 
food source locations corresponding to candidate solutions and nectar quantities reflecting their fitness. This 
structure enables efficient exploration and optimisation of the solution space.

3.	� ACO: Inspired by the foraging behaviour of ants, this heuristic algorithm utilises pheromone trails to guide 
the search process (Mohamed et al., 2023). Ants deposit pheromones along paths, and an objective function 
updates the pheromone reinforcement rules based on path quality. Each ant modifies the pheromone trail 
after completing a tour, facilitating convergence towards optimal solutions.

4.	� PSO: Rooted in swarm intelligence, PSO emulates the collective behaviour observed in fish schools or bird 
flocks (Patil et al., 2021). Particles, representing potential solutions, are initialised with random positions ( ix ) and 
velocities ( iv ) within the search space. Each particle tracks its personal best position ( bestp ) and the global best 
position ( bestg ) of the swarm, dynamically adjusting its velocity based on individual and collective experiences to 
converge on an optimal solution.

The velocity of each particle in PSO is updated based on its current velocity and the distances from its personal 
best position ( bestp ) and the global best position ( bestg ). The updated position and velocity of each particle are 
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determined using Eqs (14) and (15), respectively, incorporating the particle’s own experience and the collective 
experience of the swarm.

1
1 1 2 2( ) ( )+ = + − + −  

k k k k
ij ij best ij best ijw v c rand p x c rand g xv 	 (14)

1 1+ ++ +k k k
ij ij ijx x v 	 (15)

In the PSO algorithm, 1c  and 2c  are positive constants representing the cognitive and global learning rates, 
respectively. The parameter 1c  governs the influence of a particle’s individual experience (cognitive learning), while 

1c  determines the impact of the swarm’s collective experience (global learning).
The block diagram in Figure 1 illustrates the process of identifying (Shah and Sekhar 2019) the optimal model 

among four candidates for process control, utilising various optimisation algorithms. Here, ( ) r t  represents the 
excitation input, ( )y t  denotes the actual plant output (motor speed) and ( )*y t  corresponds to the simplified model, 
represented by a FO transfer function (Rukkaphan and Sompracha 2020). The objective function, objF , is derived 
using the integral of time-weighted absolute error (ITAE) between the simplified model output ( )*y t  and the actual 
plant output ( )y t . The mathematical form of the ITAE is given in Eq. (16) as follows:

0 | ( ) |+∞= = ∫obj ITAE tF e t dt 	 (16)

Assume that the voltage applied to the motor’s stator from the source (V) is the system’s input and that the 
rotational speed of the shaft (θ ) is the system’s output. The spinning element and shaft are taken to be rigid. If 
a viscous medium causes friction, as we also expect, the torque produced by friction will be proportionate to the 
angular speed of the shaft (Tripathi et al., 2021). The performance of the parameters employed is presented in 
Table 1 as follows:

 We will assume that = =Ke Kt K  so we have:

2( )
( )( )

=
+ + +

K PG s
R Ls Ts B K

	 (17)

As the system is treated as a black box, eliminating the need for detailed analysis of internal parameters, 
such as K , R, L, T  and B, we proposed identifying it through its open-loop response using two models: an 

∗( )

Real Process

Model
(integer/fractional)

Algorithms 
(ABC, ACO, GA, PSO)

+

--

=

( )
+

( )
+( )

Figure 1. System identification using algorithms. ABC, artificial bee colony; ACO, ant colony optimisation; GA, genetic algorithm; PSO, particle swarm 
optimisation.
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integer-order model and a FO model. The formulations of these models are provided in Eqs (18) and (19), 
respectively, as follows:

2
2 1 0

( ) =
+ +IO

bG s
a s a s a 	 (18)

As the identification process is applied to a DC motor, the non-linearity introduced by the armature and inductor 
windings is considered. FO equations are employed to model this non-linearity, as follows:

2 1
2 1 0

( ) α α=
+ +IO

bG s
a s a s a

	 (19)

To achieve this, we proposed a novel modelling approach for the DC motor, employing optimisation techniques 
to estimate the parameters of the FO model while treating the system as a « black box ».

4.	 Stabilisation with the FOPID Corrector
As shown in Figure 2, the block diagram of the FOPID control loop includes the plant model ( )G s  and the FOPID 
controller model ( )C s . The FOPID controller generates the control signal ( )U s  to regulate the output signal ( )s , 
manage the disturbance signal ( ( )D s  and track the reference input ( )R s ), while processing the error signal ( )E s .

The FOPID controller (Guedida et al., 2024) for the feedback control system is defined as follows:

FOPID
( )( )
( )

µ
λ= = + +i

p d
U s KC s K K s
E s s

	 (20)

4.1.  FOPID controller tuning by Zeigler-Nichols methods

4.1.1.  A premium adjustment method foundation on the open loop response
Inspired by the Zeigler-Nichols open loop method, Valerio and Costa published this adjustment method (Valerio and 
Costa, 2005). In this method, parameters pK , IK , λ, dK  and µ  vary frequently with L and T . The values in Table 2 
for a straightforward algebraic computation are:

2 21.0574 24.5420 0.  3554 46.7325 0.0021 0.3106= = − + + − − −pK P L T L T TL 	 (21)

4.1.2.  The closed-loop response funded a second adjustment method

Zeigler-Nichols’ critical point approach, which produces a pumping phenomenon. With a specific proportional gain, 
the system is introduced into a closed loop, and the integral and derivative actions are removed. To compute the 
parameters pK , IK , λ, dK  and µ, which vary frequently with Kcr and Pcr, Valerio and Costa were also gathering 
data. Table 3 contains a list of the corresponding polynomials’ parameters.

Table 1.  Characteristic parameters of a DC motor.

Parameters Symbol

Moment of inertia of rotor T

Motor viscous friction b

Electromotive force constant Ke
Motor torque constant Kt

Electric resistance R

Electric inductance L

Power gain P
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These rules may be used if 8≤Pcr  and * 640≤Kcr Pcr : � (22)

cr cr
cr cr

0.4384 0.08550.4139 0.0145 0.1584= = + + − −pK P K P
K P 	 (23)

4.2.  FOPID controller tuning by optimisation methods
The application of optimisation algorithms for controller tuning has grown significantly in recent years due to their 
ability to enhance dynamic accuracy and reduce overshoot in closed-loop systems. In this study, a FOPID controller 
is employed to improve the transient response and ensure robust, precise speed regulation of the DC motor. 
The controller parameters are optimised using metaheuristic algorithms to achieve an optimal balance between 
performance and stability. While AI approaches, such as artificial neural networks (ANN) and neuro-fuzzy systems, 
have shown potential in control and identification tasks, they often require extensive training data and involve 
complex implementation procedures, particularly for FO systems with non-integer dynamics. In contrast, heuristic 
optimisation algorithms—such as PSO, GA, ABC and ACO—offer a simpler and computationally efficient alternative, 

( ) ( )
( )( )

) + ( )

( )

Figure 2. Closed loop system with FOPID controller. FOPID, fractional-order proportional-integral-derivative.

Table 2.  Adjustment of FOPID using the first method for open-loop response-based parameter.

Parameters to use when      0.1 5T≤ ≤

P I λ D µ

1 1.0574− 0.6014 1.1857 0.8796 0.2778

L 24.5420 0.4025 0.3464− 15.0846− 2.1522−

T 0.3544 0.7921 0.0492− 0.0771− 0.0675
2L 46.7325− 0.4508− 1.7377 28.0388 2.4387
2T 0.0021− 0.0018 0.0006 0.0000− 0.0013−

LT 0.3106− 1.2050− 0.0380 1.6711 0.0021

FOPID, fractional-order proportional-integral-derivative.

Table 3.  Adjustment of parameter for FOPID by the second method using the closed-loop response as a basis.

P I λ D µ

1 0.4139 0.7067 1.3240 0.2293 0.8804

Kcr 0.0145 0.0101 0.0081− 0.0153 0.0048−

Pcr 0.1584− 0.0049− 0.0163− 0.0936 0.0061

1/ Kcr 0.4384− 0.2951− 0.1393 0.5293− 0.0749

1/ Pcr 0.0855− 0.1001− 0.0791 0.0440− 0.0810

FOPID, fractional-order proportional-integral-derivative.
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providing reliable convergence and adaptability without the need for model training. This approach ensures that the 
closed-loop system maintains both robustness and high performance under varying operating conditions.

A regulator’s parameters are chosen to minimise dynamic error in order to do this. Integral absolute error (IAE), 
integral temporal square error (ITSE) and integral square error (ISE) are a few performance criteria for controller 
design. Integral of time-weighted absolute error (ITAE) was used in this study.

1
0

| ( ) |
∞

= = ∫J ITAE t e t dt 	 (24)

As shown in Figure 3, four optimisation strategies will be employed to ascertain the optimal settings of the 
corrector C(s).

The root mean square (RMS) value uses the same principle but is normalised by the window duration:

2
RMS

1( ) ( )τ τ
−

= ∫
k

k f

t

k t T
f

u t u d
T

	 (25)

When you obtain samples [ ]u k  in the discrete case, the formula is as follows:

2
RMS

1
( ) ( )

= − +

= ∑
k

s

i k Nf

Tu k u i
T

	 (26)

where N  is the number of samples or the length of the time sequence on which we assess the standard of control 
effort, sT  is the sampling time and fT  is the sliding window duration.

We can specify a cost function to be minimised in order to mathematically quantify the minimisation of the 2 L
norm of the control effort. The following is one way to formulate the cost function:

2

1

2
2 ( )= ∫

t

t
J u t dt 	 (27)

Then, minimising J  would be the goal. This can be represented as an optimisation problem in discrete notation.

Minimize  { }1 2= +J J J
	 (28)

( ) ( )

( )

+ ( )

+

( )
( )

( )

Figure 3. Optimisation structure with algorithm of tuning FOPID control parameters. FOPID, fractional-order proportional-integral-derivative.
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5. Experimental Results
The components of the XK-AUT1003A model are shown in Figure 4. Our permanent magnet DC motor (JGA25-
545 12V 3000RPM) is measured for angular velocity using a tachometer, and an electronic card shows a variable 
command that ranges from −5 V to +5 V, which is the setpoint speed. Several microcontroller platforms are available 
for controller implementation, including Arduino Uno, ESP32, Raspberry Pi, PIC18F and STM32 boards. Each offers 
specific advantages: ARM-based boards, such as STM32, provide high ADC resolution and fast computation, the 
Raspberry Pi enables complex data processing and network connectivity and ESP32 offers dual-core performance 
with wireless capability. However, the Arduino Uno was chosen for this study due to its simplicity, robustness, low 
cost and straightforward cabling, as well as its seamless integration with MATLAB/Simulink for real-time controller 
deployment. Its 10-bit ADC and 5 kHz sampling frequency were sufficient for capturing the dynamics of the JGA25-
545 motor accurately. Data acquisition and serial communication were optimised using lightweight protocols and 
real-time filtering, ensuring minimal delay and stable signal transmission. While higher-end platforms could offer 
enhanced precision, the Arduino Uno provided a practical and reliable solution for proof-of-concept validation. 
Future work will explore STM32 or ESP32 implementation for higher-resolution measurements and faster execution 
in more demanding applications.

The closed-loop system can handle a variety of operating circumstances since it is resilient and flexible.
The experimental setup used for system validation consists of six interconnected stages, ensuring signal conversion, 

conditioning and control of the command applied to the DC motor. Figure 5 presents the block diagram of our system.

•	 Stage 1 – Position sensor: Measures the angular position of the motor shaft using a potentiometric sensor. 
The output voltage 1V  represents the actual position in a proportional voltage form.

•	 Stage 2 – Signal conditioning/amplifier: Adapts and filters the sensor signal to make it compatible with the 
control and feedback circuits. The processed voltage 1U  serves as the input for the control stage.

•	 Stage 3 – Power stage: Composed of a transistor bridge, this stage amplifies the control signal provided by 
the regulator to deliver the required current to the DC motor.

•	 Stage 4 – DC motor: Converts the supplied voltage MV  into mechanical energy, generating the rotational 
motion of the shaft.

Figure 4. XK-AUT1003A prototype model.
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•	 Stage 5 – Tach Generator (TG): Measures the rotational speed of the motor and provides a feedback 
voltage proportional to the angular velocity.

•	 Stage 6 – Controller: Represents the implemented control algorithm (PID, FOPID or Fractional-Order 
Model Predictive Control (FOMPC), depending on the case study). It compares the reference input with the 
measured output and generates the control action required to minimise the tracking error.

5.1.  Identification
Table 4 summarises the key specifications and electrical/mechanical parameters of the JGA25-545 DC motor used 
in the experimental setup, providing essential information for replicating and analysing the control experiments.

Figure 6a displays our DC motor’s open-loop step response. During this identification phase, we will use the four 
popular optimisation algorithms, ABC, ACO, GA and PSO, to determine the numerous parameters of the chosen 
mode. Figure 6b shows the final response of the found fractional model compared to the actual response of the 
motor. The experimental methodology used to obtain this response is then described. We must determine four 
parameters for the integer order model and two additional parameters for the fractional model.

The angular velocity of the DC motor shaft was measured by a tach generator (A PM tach generator providing 
5 V±  output for full speed range) mounted on the bench (XK-AUT1003A kit) and electrically interfaced to the 

Arduino acquisition card. The tach generator is of the permanent-magnet type, providing an analogue voltage 
output tachV  that is approximately proportional to the shaft speed ω (in revolutions per minute). A linear calibration 
relation was established such that:

(rpm) (V)ω = × +tach tachK V B 	 (29)

where tachK  is the calibration constant and B is the offset.
The analogue output of the tach generator was sampled by the Arduino board, which uses a 10-bit analogue-to-

digital converter (ADC), giving 1,024 discrete levels over the 0 – 5 V input range (~ 4.9 mV per step). The acquisition 
was performed at a sampling rate of 20 Hz, with a simulation time of 5 s, each experiment recorded 100 measurements.  
The measured voltage samples were converted into shaft speed values via the calibration relation above. The error 
between the measured speed and the model-predicted speed (for each identification method) was then computed 
using the following formula:

Figure 5. Block diagram of the experimental setup.
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Table 4.  DC motor parameters.

Parameter Value Unit

Rated voltage 12 V

No-load speed 3,000 RPM

No-load current 0.1 A

Rated torque 0.05 Nm

Rotor resistance 2 Ω

Rotor inductance 15 mH

Rotor inertia 2.1 × 10−⁵ kg/m2

Command voltage range −5 to +5 V

Measured speed range 0–3,000 RPM

Figure 6. Open-loop step response-based identification of a DC motor. PSO, particle swarm optimisation.

N
measured,i model,i

i=1 measured,i

-1Error(%)= 100
N

| |ω ω
ω

×∑ 	 (30)

where N  is the total number of samples, measured,iω  is the −i th measured speed and model,iω  the corresponding model 
output.

Regarding measurement accuracy, the ADC quantisation step (∼4.9 mV) corresponds to a speed variation 
of approximately 3000 rpm at nominal speed after calibration, under ideal conditions. The sensor, cabling and 
electrical noise may introduce additional uncertainties, so the overall realistic measurement accuracy is estimated 
at approximately ±2% of full scale.

Due to this limitation, the numerical results in Table 5 have been rounded to two decimal places to reflect 
the actual measurement precision. The sampling frequency was chosen to faithfully monitor the motor’s transient 
response (rise time in the order of seconds) while avoiding aliasing.

This methodology ensures an appropriate resolution in time and magnitude of the speed data, allowing reliable 
comparison between classical and FO model identification.

The parameter settings of all optimisation algorithms used in this study are summarised in Table 5. These 
configurations ensure fair comparison and reproducibility across all tested methods.

5.1.1.  Sampling frequency selection based on open-loop analysis
The selection of an appropriate sampling period is critical for accurate representation of system dynamics in 
discrete-time control applications. Based on the open-loop step response analysis, the DC motor system exhibits a 
rise time of approximately 1.3 s.≈tr  Using the established relationship between rise time and system bandwidth, the 
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approximate bandwidth was estimated as  2.2 /  1.69 rad / sω ≈ =
BW

tr , corresponding to a frequency of  0.27 Hz≈BWf .  
According to the Nyquist–Shannon sampling theorem, the sampling frequency must be at least twice the maximum 
signal frequency to avoid aliasing. However, for control system applications, a more conservative criterion is 
recommended to ensure adequate capture of transient dynamics and to maintain controller performance. Industry 
standards suggest sampling frequencies between 10 and 30 times the closed-loop bandwidth. In this work, a 
sampling frequency of 20 Hz=sf  (sampling period  0.05 s=sT ) was selected, yielding a ratio of approximately 74 
times the open-loop bandwidth. This choice ensures sufficient temporal resolution with approximately 26 samples 
during the rise time, enabling faithful reconstruction of the motor speed profile while maintaining compatibility with 
the Arduino-based data acquisition system capabilities.

While the four methods were used to simulate the other sections, the blue curve in Figure 7 represents the step 
responses of the two models (Motor).

The parameters of the Oustaloup recursive approximation were selected to ensure an accurate representation 
of the fractional dynamics over the relevant frequency range of the system. In this study, the approximation order 
was set to 5=N , with lower and upper frequency bounds 110 rad/sω −=L  and 210 rad/sω =H . For the fractional model 
as shown in Eq. (35), an estimate of the dominant frequency can be obtained from the balance between the highest-
order and constant terms, 2.35842440 7.30100≈s  giving 1/ 2.3584(7.3010 / 0.2440) 4.23 rad/s≈ ≈s . This value lies well within 
the selected approximation band [0.1,100]rad / s, confirming the adequacy of the chosen parameters to ensure an 
accurate and stable Oustaloup approximation for the studied FO system. The Oustaloup approximation with 5=N
provides a faithful representation of the fractional operator throughout the control-relevant frequency range while 
keeping model order and computational cost moderate.

So, the chosen parameters are: 1 2 / 25, 10 rad/s, 10 rad/s, ( )αω ω ω ω−= = = =L H L HN K
From Table 6, the integer system ( )IOG s  with PSO is:

2
715.498( )

0.4595 4.3391 5.4522
=

+ +IOG s
s s

	 (34)

The ( )FOG s  system in the fractional model is:

2.3584 1.0861
943.4874( )

0.2440 6.3247 7.3010
=

+ +FOG s
s s

	 (35)

The FO model offers enhanced flexibility, enabling it to better adapt to varying operating conditions. Factors, such 
as temperature fluctuations, load variations and other external influences, can significantly impact the performance 
of DC motors. Unlike conventional integer-order models, the fractional approach is more capable of capturing non-
linear behaviours and complex system interactions.

To validate the proposed fractional model, an identification step is carried out by analysing the open-loop 
response under a different input amplitude. Specifically, Figure 8 illustrates the system behaviour for an input 

Table 5.  Optimisation algorithm parameter settings.

Algorithm Population size Number of iterations Main control parameters

PSO 50 100 w = 0.7, c1 = 1.5, c2 = 1.5

GA 40 100 Crossover = 0.8, Mutation = 0.05

ABC 30 100 Limit = 50, food sources = 15

ACO 25 100 α = 1, β = 2, ρ = 0.5

Number of decision variables Lower bound Upper bound

4 (b, 2a , 1a , 0a ) [0, 0, 0, 0] [1,000, 1, 10, 10]

6 (b, 2a , 2α , 1a , 1α , 0a ) [0, 0, 0, 0, 0, 0] [1,500, 1, 10, 10, 5, 10]

5( pK , IK ,λ , dK ,µ ) [0, 0, 0, 0, 0] [200, 200, 2, 10, 2]

ABC, artificial bee colony; ACO, ant colony optimisation; GA, genetic algorithm; PSO, particle swarm optimisation.
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amplitude of 300, where the fractional model demonstrates close agreement with the actual motor response, 
confirming its effectiveness.

Following this, the same optimisation algorithms are applied to tune the parameters of the controller ( )C s  for 
both the integer-order and FO models. The resulting optimal parameters of the FOPID controller (Idir et al., 2024) 
are then determined, establishing a solid basis for performance comparison.

5.2. Stabilisation with a FOPID controller
In this section, the controller parameters of the FOPID are iteratively refined within a closed-loop framework using 
MATLAB/Simulink, where advanced optimisation techniques are applied to both the integer-order and FO models. 
The optimised FOPID parameters are presented in Table 7. It should be noted that power blocks with amplification 
gain are embedded in the 0b  parameters, which account for their relatively large values during identification. 
Consequently, the proportional gain pK  of the FOPID controller also exhibits higher values.

When applying these optimisation algorithms to both models, the FOPID controller achieves satisfactory 
performance. However, special attention must be paid to the way the regulator manages the control effort. The 
effectiveness of the fractional model is demonstrated if it achieves comparable performance while requiring 
significantly less effort than the integer-order counterpart. To facilitate this, we proposed the use of a two-position 

Table 6.  Integer and fractional model with optimal parameter set.

(a)

b 2a 1a 0a Error (%)

ABC 703.040 0.1030 4.0911 5.3434 1.00

ACO 568.216 0.4270 4.7000 4.1927 2.34

GA 1100.24 0.7100 6.6710 8.3864 0.88

PSO 715.489 0.4595 4.3391 5.4522 0.79

(b)

b 2a α2 1a α1 0a Error (%)

ABC 1028.74 2.0005 0.6758 3.3143 1.1133 7.5910 0.53

ACO 87.079 0.2540 1.2396 0.6000 0.1950 0.2486 3.67

PSO 943.48 0.2240 2.3584 6.3247 1.0861 7.3010 0.22

GA 785.99 1.8313 0.7281 3.1743 1.2083 5.9033 1.00

ABC, artificial bee colony; ACO, ant colony optimisation; GA, genetic algorithm; PSO, particle swarm optimisation.

Figure 7. Comparison of open-loop step responses: integer vs. fractional models. ABC, artificial bee colony; ACO, ant colony optimisation; GA, 
genetic algorithm; PSO, particle swarm optimisation.
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regulation structure, which allows the evaluation of the control effect for each closed-loop model in real time. This 
simulation step is essential, as it provides valuable insights into the practical implementation of DC motor control.

Two distinct models—one of fractional order and the other of integer order—will be analysed. The effort of the 
FOPID corrector’s control legislation is analysed. The results of this investigation will be used in a practical study.

To further validate the effectiveness of the proposed identification approach, a comparative analysis was 
conducted between four optimisation algorithms: PSO, GA, ACO and ABC. The convergence profiles presented 
in Figure 9a clearly show that PSO reaches the minimum cost value faster and with greater stability than the 
other algorithms. In addition, the statistical comparison of the final identification errors (Figure 9b) confirms that 
PSO consistently achieves the smallest mean error and standard deviation, demonstrating both higher accuracy 

Figure 8. Validation of model.

Table 7.  Performance assessment of controllers applied to integer and fractional models.

pK IK λ dK µ ( )  %Overshoot ( ) Risetime s Settling time (s)

ABCIO 140.275 187.65 1.5861 0.6831 0.9582 2.0510 1.6875 3.5448

ACOIO 90.420 45.157 0.9424 2.6584 0.8912 3.5231 2.3654 2.5447

GAIO 42.895 63.845 1.2045 2.9821 0.9994 1.7548 1.5483 0.9543

PSOIO 70.548 30.448 1.0054 3.584 1.2854 1.4545 0.5898 1.0911

ZN1IO 91.578 70.6554 0.9582 5.3254 1.1415 10.554 3.1554 7.5897

ZN2IO 101.05 60.545 1.0254 4.5544 1.2054 11.215 4.114411 8.1545

ABCFO 70.6225 100.01 1.0025 0.6831 1.1532 0.0000 1.5487 1.9269

ACOFO 48.600 87.617 0.9596 0.1190 0.8729 0.0000 1.5307 1.8454

GAFO 74.064 83.584 1.1099 1.8281 0.8895 0.0000 1.6928 1.0516

PSOFO 49.219 65.352 1.0823 2.0012 0.9899 0.0000 1.5280 1.0911

ZN1FO 50.215 70.225 1.2015 4.5454 0.1521 4.4544 1,454.5 1.8474

ZN2FO 60.124 100.55 1.1024 5.1544 0.9554 7.5441 1,5485 1.77555

ABC, artificial bee colony; ACO, ant colony optimisation; GA, genetic algorithm; PSO, particle swarm optimisation.
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and robustness. This superior performance can be attributed to the efficient balance between global exploration 
and local exploitation in the PSO mechanism, which enables a more reliable convergence towards the global 
optimum solution.

5.2.1.  Physical interpretation of control effort
The control effort is quantified using the RMS L2 norm, which represents the effective voltage amplitude applied to 
the motor. For a DC motor with armature resistance R ≈ 2 Ω, the energy dissipated over the simulation period can 
be estimated as follows:

2 2
1 10

( ) ( )= =∫
simT

sim RMSE R u t dt R T u 	 (36)

simT  is the total time you have been simulating your engine control system.
For example, as shown in Table 8, the PSO controller with the FO model (URMS  =  6.48  V) dissipates 

approximately 21.0 J/s, representing a 4.2% energy saving compared to the integer-order model (21.9 J/s). This 
demonstrates that FO modelling not only improves control performance but also enhances energy efficiency in 
practical motor control applications.

The FO model provides a significant reduction in RMS effort for PSO (−2.16%) and ABC (−2.82%). This reduction 
translates to energy savings of approximately 4%–5% for these controllers. The PSO controller with the FO model 
exhibits the minimal effort (6.48 V), demonstrating its superiority in energy efficiency. Figure 10 shows the evolution 
of the effort produced for the two methods.

When comparing the different optimisation techniques, all deliver satisfactory performance, with PSO exhibiting 
a slight advantage. Using an integer-order identification model, regulation by a FO controller yields an overshoot 
of 1.45%. In contrast, when employing a FO model with different optimisation methods, the overshoot is completely 
eliminated. For instance, with a fractional model optimised by PSO, the FOPID controller achieves a settling time of 
1.5 s. Across both fractional and integer-order models, the five key controller parameters ( pK , IK , λ , dK  and µ) are 
identified successfully and produce reliable results.

The practical validation of the theoretical framework was carried out using MATLAB/Simulink [16] with the XK-
AUT1003A motor model. The optimised FOPID parameters obtained through PSO were implemented in real time 
using an Arduino UNO board connected to MATLAB/Simulink. The experimental results confirm the theoretical 
findings, as shown in Figure 11: the system stabilises within 1.5 s with no overshoot. By reducing the energy 
demand, the FO controller not only enhances the DC motor’s dynamic performance but also contributes to long-
term cost savings.

Figure 9. Convergence behaviour and statistical error comparison of optimisation algorithms. ABC, artificial bee colony; ACO, ant colony optimisation; 
GA, genetic algorithm; PSO, particle swarm optimisation.

(a) (b)
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Another key performance measure is disturbance rejection. To assess the robustness of the FO controller 
in practical DC motor applications, the study examined its response to external perturbations and parameter 
uncertainties. The system was tested under coefficient variations of up to ±20%, as shown in Figure 12. The 
proposed robust FOPID controller ensures system stability and resilience to gain fluctuations. At t  =  2  s, an 
external disturbance was applied to G(s), and the controller rapidly restored the system to its reference value 
within an average recovery time of 0.10  s. The maximum speed deviation observed across all tests averaged 
37.21 rad/s (approximately 18.6% of the setpoint), demonstrating strong disturbance rejection capability. Similarly, 
at t  =  2.5  s, when another disturbance was introduced, the system exhibited a transient deviation but quickly 
regained its steady-state speed without overshoot or sustained oscillation. These results confirm that the proposed 
robust FOPID controller effectively attenuates disturbances and maintains stable performance under uncertain and 
varying operating conditions.

Table 8.  Control effort final values for integer and fractional models.

Method PSO GA ACO ABC

IO
u  (V) 6.6222 9.1140 8.3212 9.0678

FO
u  (V) 6.4791 9.1226 8.4645 8.8118

ABC, artificial bee colony; ACO, ant colony optimisation; GA, genetic algorithm; PSO, particle swarm optimisation.

Figure 10. Effort made control inputs with IOG  and FO.G  ABC, artificial bee colony; ACO, ant colony optimisation; GA, genetic algorithm; PSO, 
particle swarm optimisation.

(a) (b)

Figure 11. DC motor closed-loop response under FOPID-PSO control and effort evaluation. FOPID, fractional-order proportional-integral-derivative; 
PSO, particle swarm optimisation.

(a) (b)

463



DC motor speed control

6.	 Conclusion
This study introduces a novel approach to DC motor control by modelling the system as a “black box”, eliminating 
the need for detailed internal parameters, such as terminal voltages, currents or armature resistance. The proposed 
methodology employs optimisation algorithms to identify the parameters of both integer-order and FO models. The 
results reveal that the FO model provides a more accurate representation of the motor’s dynamics, enabling deeper 
insight into system behaviour.

Building upon this modelling framework, an FOPID controller was designed using PSO. The controller achieves 
an 80% reduction in control effort, which translates directly into lower energy consumption and improved system 
efficiency. From a performance standpoint, the proposed strategy ensures robust stability, zero overshoot and 
rapid dynamic response, while maintaining strong disturbance rejection even under parameter uncertainties. These 
outcomes confirm that integrating FO modelling with intelligent optimisation leads to a highly energy-efficient and 
robust control solution for DC motor systems.

For future work, the proposed framework could be extended to Brushless DC (BLDC) motors or multi-machine 
configurations, where non-linear coupling effects are more significant. Moreover, exploring alternative FO control 
structures (e.g., FO-PIλDµ, CRONE or adaptive fractional controllers) and validating the approach through 
hardware-in-the-loop or real-time embedded implementation would further strengthen the practical relevance of 
this research.
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