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Nonlinear Optimal Control of Magnetically 
Geared Induction Motors

1. Introduction
Magnetic gears exhibit several advantages over mechanical gears. Due to contactless operation, the constituent 
parts of magnetic gears are not subject to wear, which significantly reduces the need for their maintenance and 
increases their reliability (Habibi et al., 2024; Montegue et al., 2012). Magnetic gears are also characterised by 
inherent load protection under faults, torque transfer with reduced friction, low mechanical stresses and low acoustic 
noise (Song et al., 2022; Sun et al., 2017). In magnetic gears, energy losses are minimised and electric machines 
connected to them can operate efficiently across a wide range of speeds (Pop et al., 2018; Wang and Gerber, 
2014). Magnetic gears are used in various applications, for instance, the traction system of electric vehicles (EVs), 
wind and tidal turbines and marine power generation units (Liao et al., 2023; McGilton et al., 2018). The coaxial 
magnetic gear configuration comprises coaxial rotating parts, and because of its very good motion transmission 
capability over a wide range of speeds and torques, it has become widely used in Hybrid Electric Vehicles (HEVs) 
and EVs (Tong et al., 2023; Xie et al., 2024). The dynamical system which is formed by connecting magnetic gears 
to the rotor of an electric machine (three-phase synchronous or induction machines or multi-phase synchronous 
and induction machines) exhibits complex non-linear dynamics (Long et al., 2023; Yang et al., 2024). The solution of 
the associated non-linear control problem is a non-trivial task, and so-far several non-linear control techniques have 
been proposed for it (e.g. sliding-mode control, non-linear model predictive control or global linearisation-based 
control schemes) (Druant et al., 2016; Xi et al., 2023). The application of non-linear control to magnetically geared 
electric machines comes also against several estimation issues due to harsh operating conditions which prevent 
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MGIM nonlinear control

the use of dedicated sensors for the state variables of these machines or for the mechanical load (Kumashira et al., 
2004; Zhu, 2018). Magnetically-geared electric machines combine the merits of contactless motion transmission 
with the ability of the above-noted machines to vary their torque and speed over a wide range (Bidouche et al., 2020; 
Qu et al., 2011). Magnetically geared electric motors can be used efficiently in vehicles traction, while magnetically-
geared electric power generators can be used for producing electric power from renewable energy sources. The 
related non-linear control problems are challenging and several noteworthy results have appeared in this area 
(Dobzhanskyi et al., 2019; Hazra et al., 2020).

The present article proposes a new non-linear optimal control method for the dynamic model of the magnetically-
geared induction motor (MGIM) (Rigatos, 2016; Rigatos et al., 2024a). First, it is proven that the dynamic model 
of the induction motor with magnetic gears is differentially flat (Rigatos, 2015; Rigatos et al., 2022). Next, to apply 
this control scheme, the dynamic model of the MGIM undergoes approximate linearization around the temporary 
operating point (x*, u*) which is recomputed at each time step of the control algorithm, where x* is the present value 
of the system’s state vector and u* is the last sampled value of the control inputs vector (Basseville and Nikiforov, 
1993; Rigatos and Tzafestas, 2007; Rigatos and Zhang, 2009). The linearization process is based on first-order 
Taylor series expansion and on the computation of Jacobian matrices (Rigatos et al., 2024b, 2025). The modelling 
error which is due to the truncation of higher-order terms from the Taylor series is considered to be a perturbation 
which is asymptotically compensated by the robustness of the control algorithm. For the approximately linearized 
model of the system an H-infinity feedback controller is designed (Rigatos et al., 2024b, 2025). To compute the 
stabilizing feedback gains of the H-infinity controller an algebraic Riccati equation has to be solved repetitively at 
each iteration of the control algorithm. The global stability properties of the control method are proven through 
Lyapunov analysis (Rigatos et al., 2024c; Toussaint et al., 2000).

2. Dynamic Model of the Magnetically Geared Induction Motor
The diagram of a magnetically geared induction motor (MGIM) being used in the traction system of an EV is shown 
in Figure 1. The dynamic model of the induction motor is written in the dq asynchronously rotating frame using 
the assumption of field orientation (Rigatos, 2015; Rigatos et al., 2024a). This results in the following set of state 
equations:

 (1)

 (2)

 (3)

 (4)

 (5)

Figure 1. Diagram of the traction system of an EV based on a MGIM. EV, electric vehicle; MGIM, magnetically geared induction motor.
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where, ωm is the angular speed of the rotor, ψrd is the d-axis component of the magnetic flux of the rotor (due to 
field orientation, about the q-axis component of the magnetic flux it holds that ψrq = 0), isd is the d-axis component of 
the stator’s currents vector, isq is the q-axis component of the stator’s currents vector and ρ is the orientation angle 
of the magnetic field of the motor, which changes at an asynchronous rate. In the dynamic model of the induction 
motor parameters, α, β, γ, μ, Ls. M and σ are associated with the coefficients of the electric circuit of the stator and 
rotor (resistance, inductance, mutual inductance, magnetic permeability and number of poles).

The parameters of the dynamic model of the MGIM are outlined in Table 1:

It holds that: , where Rr is the rotor resistance, Rs is the 
stator resistance, Lr is the rotor inductance, Ls is the stator inductance, M i the mutual inductance, np is the number 
of poles and J is the moment of inertia of the rotor (Rigatos, 2015; Rigatos et al., 2024a).

The magnetic gear is composed of an inner, middle and an outer rotor. The inner rotor has a pm number of pole 
pairs while the outer rotor has a po number of pole pairs. The middle rotor, called ‘cage rotor’, has nL = po + pm number 
of ferromagnetic pole pieces and air gaps. The inner rotor of the magnetic gear usually serves as the high-speed 
rotor connected to the prime mover. On the other hand, either the middle rotor is kept stationary and the outer rotor 
serves as the low-speed rotor or the middle rotor serves as the low-speed rotor and the outer rotor is kept stationary 
(Habibi et al., 2024). In the considered MGIM, the inner rotor is connected with the induction motor and is the high-
speed part of the motion transmission system, while the middle rotor is connected with the traction system of the EV 
and is the low-speed part of the motion transmission system. The outer rotor is kept stationary. The electromagnetic 
torque of the induction motor is Te and the IM’s turn speed is ωm. The torque at the side of the traction system of the 
EV is TL, and the turn speed of the load is ωL. It holds the magnetic gear’s ratio is .

The dynamics of the magnetic gear is given by the following set of equations (Habibi et al., 2024):

 (6)

 (7)

 (8)

Table 1. Parameters of the MGIM dynamic model.

Parameter Definition

ωm, ωL Angular speed of the motor, load

Jm, JL, Jg Moment of inertia of the rotor, load, gear

Te, TL, Tg Torque of the rotor, load, gear

ϕ Angle denoting the speed difference between rotor and load

Gr Transmission ratio of the magnetic gear

Bm, BL, Bg Friction coefficient at rotor, load and gear

po, pm Number of ferromagnetic pole pieces and air gaps

nL Sum of ferromagnetic pole pieces and air gaps

i i, s sd q d,q axis components of the IM stator currents

Rs, Rr Resistance of the IM’s stator, rotor

r rd q 
ψ ψ, d,q axis components of the IM rotor flux

Ls, Lr Inductance of the IM’s stator, rotor

M Mutual inductance between IM’s stator and rotor

np Number of poles of the IM’s stator

ρ Orientation of the IM’s magnetic field

α, β, γ

μ, σ

IM, Induction Motor; MGIM, magnetically-geared induction motor.
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with T˙L = 0, which signifies that the load’s torque is constant or piece-wise constant. In Eq. (6),  is the 
electromagnetic torque of the motor, while the torque of the magnetic gear at the rotor’s side is Tgsin(φ), which 
opposes to the motion of the inner rotor and the torque due to friction forces applied on the motor is Bmωm. In Eq. (7), 
Tgsin(φ) is the torque of the magnetic gear, which causes the load’s turn motion, TL is the unknown torque of the load 
which is taken to be piece-wise constant and (BL + Bg)ωL is the torque of friction forces applied to the gear and the 
load. In Eq. (8), φ is the ‘angle’ variable which determines the changes of the gear’s torque.

In Eqs (6)–(8), ωm is the turn speed of the motor (high-speed rotation or HSR), ωL is the turn speed of the load 
(low-speed rotation or LSR), φ is the ‘angle’ variable denoting the difference in the turn speed of the rotor from 
the turn speed of the load, Gr is the transmission ratio of the magnetic gear, Jm, Jg, JL are the moments of inertia of the  
motor, gear and load, respectively, while Bm, Bg, BL are the viscous damping coefficients of the motor, gear and load, 
respectively.

Thus, the aggregate dynamic model of the MGIM is:

 (9)

 (10)

 (11)

 (12)

 (13)

 (14)

Eq. (5) about the orientation angle of the magnetic flux can be omitted from the above given dynamic model. 
Actually, the orientation of the magnetic field ρ is affected by state variables isq and ψrd, but has no impact on the rest 
of the state variables of the model.

Next, the state vector of the MGIM is defined as x = [x1,x2,x3,x4,x5,x6]T ⇒ or x = [ωm,ωL,φ,ψrd,isd,isq]T and the control 
inputs vector of the MGIM is defined as: . This results in the state-space description:

 (15)

Using the x∈R 6×1, f(x)∈R 6×1, g(x)∈R 6×2 and u∈R 2×1, the dynamic model of the MGIM is finally written in the 
following concise non-linear affine-in-the-input state-space form

 (16)

3. Differential Flatness of the MGIM
It can be proven that the dynamic model of the MGIM, which was previously described in the state-space model 
of Eq. (15), is differentially flat, with flat outputs vector . A system is differentially flat if (i) 
all its state variables and its control inputs can be written as differential relations of a subset of the state vector 
elements, which constitute the flat outputs vector of the system, (ii) the flat outputs vector and its time-derivatives are 
differentially independent which means that they are not connected through relations in the form of an homogenous 
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differential equation. From the second row of the state-space model and considering that TL is a piece-wise constant, 
one solves for x3. This gives:

 (17)

 

which signifies that x3 is a differential function of the flat outputs vector. From the third row of the state-space model, 
one solves for the state variable, x1. This gives

 (18)

which signifies that x1 is a differential function of the flat outputs vector. From the first row of the state-space model, 
one solves for the state variable, x6. This gives

 (19)

which signifies that x6 is a differential function of the flat output vector. From the fifth row of the state-space model, 
one solves for the state variable, x5. This gives

 (20)

which signifies that x5 is a differential function of the flat outputs vector. Next, from the sixth row of the state-space 
model, one solves for the control input, u1. This gives

 (21)

which signifies that control input u1 is a differential function of the flat outputs vector, Y. Finally, from the seventh row 
of the state-space model, one solves for the control input, u2. This gives

 (22)

which signifies that control input u2 is a differential function of the flat outputs vector, Y. As a result of the above, all 
state variables and the control inputs of the dynamic model of the MGIM are differential functions of the flat outputs 
vector, Y. Consequently, this system is differentially flat.

4. Approximate Linearisation of the MGIM
The dynamic model of the MGIM, being initially in the non-linear form x˙ = f(x) + g(x)u undergoes approximate 
linearisation around the temporary operating point (x*,u*), where x* is the present value of the system’s state vector 
and u* is the last sampled value of the control inputs vector. The linearisation is based on the use of first-order Taylor 
series expansion and on the Jacobian matrices of the system and takes place at each sampling instance. This gives:

 (23)

where A, B are the Jacobian matrices of the system and  is the cumulative disturbance term, which may comprise 
(i) the modelling error due to the truncation of higher order terms from the Taylor series, (ii) exogenous perturbations 
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and (iii) sensor measurement noise of any distribution. Using that the control inputs gain matrix g(x) is time-invariant, 
the Jacobian matrices A, B are computed as follows:

 (24)

 (25)

Computation of the Jacobian matrix ∇xf(x) |(x*,u*):
First row of the Jacobian matrix

  .

Second row of the Jacobian matrix

 

Third row of the Jacobian matrix 

Fourth row of the Jacobian matrix 

Fifth row of the Jacobian matrix

 .

Sixth row of the Jacobian matrix 

5.	 Design	of	an	H-Infinity	Feedback	Controller
5.1. Equivalent linearised dynamics of the MGIM
After linearisation around its current operating point, the dynamic model for the MGIM is written as:

 (26)

Parameter d1 stands for the linearisation error in the MGIM’s model that was given previously in Eq. (26). The 
reference setpoints for the state vector of the aforementioned dynamic model are denoted by   
Tracking of this trajectory is achieved after applying the control input u*. At every time-instant, the control input u* is 
assumed to differ from the control input u appearing in Eq. (26) by an amount equal to ∆u, i.e. u* = u + ∆u.

 (27)

The dynamics of the controlled system described in Eq. (26) can also be written as

 (28)
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and by denoting d3 = −Bu* + d1 as an aggregate disturbance term one obtains

 (29)

By subtracting Eq. (27) from Eq. (29), one has

 (30)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as , the tracking 
error dynamics becomes

 (31)

where L is the disturbance inputs gain matrix. The above linearised form of the MGIM can be efficiently controlled 
after applying an H-infinity feedback control scheme.

5.2.	 The	non-linear	H-infinity	control
The initial non-linear model of the MGIM is in the form

 (32)

Linearisation of the MGIM is performed at each iteration of the control algorithm around its present operating 
point (x*,u*) = (x(t),u(t − Ts)). The linearised equivalent of the system is described by

 (33)

where matrices A and B are obtained from the computation of the previously defined Jacobians and vector  
denotes disturbance terms due to linearisation errors, while L is a disturbance input gain matrix.

The problem of disturbance rejection for the linearised model cannot be handled efficiently if the classical Linear 
Quadratic Regulator (LQR) control scheme is applied. This is because of the existence of the perturbation term .  
The disturbance term , apart from modelling (parametric) uncertainty and external perturbation terms, can also 
represent noise terms of any distribution. On the contrary, in the H∞ control approach, a feedback control scheme 
is designed for trajectory tracking by the system’s state vector and simultaneous disturbance rejection, considering 
that the disturbance affects the system in the worst possible manner. The disturbances’ effects are incorporated in 
the following quadratic cost function:

 (34)

5.3.	 Computation	of	the	feedback	control	gains
For the linearised system given by Eq. (33), the cost function of Eq. (34) is defined, where coefficient r determines the 
penalisation of the control input and the weight coefficient ρ determines the reward of the disturbances’ effects. It is 
assumed that (i) the energy that is transferred from the disturbance signal (t) is bounded, i.e. ,  
(ii) matrices [A,B] and [A,L] are stabilisable, (iii) matrix [A,C] is detectable. In the case of a tracking problem, the 
optimal feedback control law is given by

 (35)

with e = x−xd to be the tracking error, and  where P is a positive definite symmetric matrix. As it will be 
proven in Section 6, matrix P is obtained from the solution of the Riccati equation

 (36)
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where Q is a positive semi-definite symmetric matrix. The worst-case disturbance is given by

 . (37)

The solution of the H-infinity feedback control problem for the MGIM and the computation of the worst-case 
disturbance that the related controller can sustain, comes from superposition of Bellman’s optimality principle when 
considering that the induction motor with magnetic gears is affected by two separate inputs (i) the control input u 
and (ii) the cumulative disturbance input (t). Solving the optimal control problem for u, (Gorecki 2018; Grimble 
and Majeski 2020; Molley et al., 2022; Tao et al., 2021) i.e. for the minimum variation (optimal) control input that 
achieves elimination of the state vector’s tracking error, gives . Equivalently, solving the optimal control 
problem for , i.e. for the worst-case disturbance that the control loop can sustain gives . The diagram 
of the considered control loop for the MGIM is given in Figure 2.

6.	 Lyapunov	Stability	Analysis
Through Lyapunov stability analysis, it will be shown that the proposed non-linear control scheme assures H∞ 
tracking performance for the MGIM, and that, in case of bounded disturbance terms, asymptotic convergence to 
the reference setpoints is achieved. The tracking error dynamics for the MGIM are written in the form of Eq. (31) 

, where in the MGIM’s case, L = ∈R6×6 is the disturbance inputs gain matrix. Variable  denotes 
model uncertainties and external disturbances of the model of the MGIM. The following Lyapunov equation is 
considered

 (38)

where e = x − xd is the tracking error. By differentiating with respect to time, one obtains

 (39)

Figure 2. Diagram of the control scheme for the MGIM. MGIM, magnetically geared induction motor.
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The previous equation is rewritten as

 (40)

Assumption: For a given positive definite matrix Q and coefficients r and ρ, there exists a positive definite matrix P, 
which is the solution of the following matrix equation

 (41)

Moreover, the following feedback control law is applied to the system

 (42)

By substituting Eqs (41) and (42), one obtains

 (43)

which, after intermediate operations, gives

 (44)

Lemma: The following inequality holds

 (45)

Proof: The binomial  is considered. Expanding the left part of the above inequality, one gets

 (46)

The following substitutions are carried out: a = d˜ and b = eTPL, and the previous relation becomes

 (47)

Eq. (47) is substituted in Eq. (44), and the inequality is enforced, thus giving

 (48)

Eq. (48) shows that the H∞ tracking performance criterion is satisfied. The integration of  from 0 to T gives

 (49)

Moreover, if there exists a positive constant Md > 0 such that , then one gets .  
Thus, the integral  is bounded. Moreover, V (T) is bounded, and from the definition of the Lyapunov 
function V in Eq. (38), it becomes clear that e(t) will also be bounded since . 
According to the above and with the use of Barbalat’s Lemma, one obtains .

Through the stages of the stability proof, one arrives at Eq. (48), which shows that the H-infinity tracking 
performance criterion holds. By selecting the attenuation coefficient ρ to be sufficiently small and in particular 
to satisfy , one has that the first derivative of the Lyapunov function is upper bounded by 0. This 
condition holds at each sampling instance, and consequently, global stability for the control loop can be concluded.
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7. Simulation Tests
The global stability properties of the control method and the elimination of the state vector’s tracking error, which 
were previously proven through Lyapunov analysis, are further confirmed through simulation experiments. In the 
implementation of the proposed non-linear optimal control method for the MGIM, the algebraic Riccati equation of 
Eq. (41) has to be solved in each sampling period. Indicative values about the parameters of the dynamic model 
of the MGIM have been as follows: (i) induction motor: Ld = 1.1mH, Lq = 1.1 mH, τs = 5, M = 40.3 mH, σ = 2, μ = 40, 

Figure 3. Tracking of setpoint 1 by the MGIM with the use of non-linear optimal control: (a) convergence of state variables x1 to x3 (blue lines) to 
the associated setpoints (red lines) and estimated values provided by Kalman Filtering (b) convergence of state variables x4 to x6 (blue lines) to the 
associated setpoints (red lines) and estimated values provided by Kalman Filtering. MGIM, magnetically geared induction motor.

Figure 4. Tracking of setpoint 1 by the MGIM with the use of non-linear optimal control: (a) variations of the control inputs u1 and u2 (blue lines) 
(b) variation of the tracking error variables ei, i = 1,…,6 associated with the state variables xi, i = 1,…,6. MGIM, magnetically geared induction motor.
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Jm = 0.5 kgm2, Bm = 0.01, np = 4, α = 0.025, β = 0.3, γ = 0.7, JL = 0.2 kgm2, and (ii) magnetic gear: Jg = 0.1 kgm2, 
Gr = 2, Bg = 0.01, pm = 10, nL = 20, BL = 0.01. The obtained results are depicted in Figures 3–6. In the obtained 
diagrams, the real values of the system’s state vector are depicted in blue colour, the reference setpoints are printed 
in red colour, while the state estimates, which are provided by the H-infinity Kalman Filter, are plotted in green 
colour. It can be noticed that in all test cases, fast and accurate tracking of setpoints was achieved by the state 
variables of the MGIM, and this was done under moderate variations of the control inputs.

To elaborate on the tracking performance and on the robustness of the proposed non-linear optimal control 
method for the MGIM, Tables 2 and 3 are given which provide information about the accuracy of tracking of the 
reference setpoints by the state variables of the MGIM.

Figure 5. Tracking of setpoint 2 by the MGIM with the use of non-linear optimal control: (a) convergence of state variables x1 to x3 (blue lines) to 
the associated setpoints (red lines) and estimated values provided by Kalman Filtering (b) convergence of state variables x4 to x6 (blue lines) to the 
associated setpoints (red lines) and estimated values provided by Kalman Filtering. MGIM, magnetically geared induction motor.

Figure 6. Tracking of setpoint 2 by the MGIM with the use of non-linear optimal control: (a) variations of the control inputs u1 and u2 (blue lines) 
(b) variation of the tracking error variables ei, i = 1,…,6 associated with the state variables xi, i = 1,…,6. MGIM, magnetically geared induction motor.
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8.	 Conclusions
A non-linear optimal control method has been proposed for the dynamic model of the MGIM. Using the field-
orientation assumption and a description in the asynchronously rotating dq reference frame, the dynamic model of 
the MGIM has been formulated, and differential flatness properties have been proven about it. To apply the proposed 
non-linear optimal control method, the dynamic model of the MGIM has undergone approximate linearisation with 
the use of first-order Taylor-series expansion and through the computation of the associated Jacobian matrices. 
The linearisation process was taking place at each sampling instance around the temporary operating point (x*,u*), 
where x* is the present value of the system’s state vector and u* is the last sampled value of the control inputs 
vector. For the approximately linearised model of the system, an H-infinity feedback controller was designed. To 
compute the feedback gains of the H-infinity controller, an algebraic Riccati equation had to be solved repetitively 
at each time step of the control algorithm. The global stability properties of the control scheme have been proven 
through Lyapunov analysis.

Table 2. Tracking RMSE for the MGIM in the disturbance-free case

RMSEx1 RMSEx2 RMSEx3 RMSEx4 RMSEx5 RMSEx6

Test1 0.0052 0.0026 0.0064 0.0037 0.0001 0.0002

Test2 0.0041 0.0020 0.0064 0.0063 0.0002 0.0003

MGIM, magnetically geared induction motor; RMSE, Root Mean Square Error.

Table 3. Tracking RMSE for the MGIM in the case of disturbances

∆a% RMSEx1 RMSEx2 RMSEx3 RMSEx4 RMSEx5 RMSEx6

0% 0.0052 0.0026 0.0064 0.0037 0.0001 0.0002

10% 0.0057 0.0029 0.0064 0.0014 0.0001 0.0003

20% 0.0062 0.0031 0.0064 0.0007 0.0001 0.0003

30% 0.0066 0.0033 0.0064 0.0027 0.0002 0.0001

40% 0.0069 0.0035 0.0065 0.0046 0.0002 0.0003

50% 0.0073 0.0036 0.0065 0.0064 0.0002 0.0003

60% 0.0075 0.0038 0.0065 0.0081 0.0002 0.0003

MGIM, magnetically geared induction motor; RMSE, Root Mean Square Error.
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