
Power Electronics and Drives

Power Electronics and Drives
Volume 9(44), 2024    DOI: 10.2478/pead-2024-0021

331

Research paper

1Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava, Institute of Automotive Mechatronics, 
Bratislava, Slovakia
2Department of Systems and Control, Jožef Stefan Institute, Ljubljana, Slovenia

Mikulas Huba1 , Pavol Bistak1 , Jan Brieznik1,* , Damir Vrancic2

Constrained Series PI, PID and PIDA Controller 
Design Inspired by Ziegler–Nichols

Received: 30 December 2023; Accepted: 22 May 2024

Abstract: �The present paper complements the results of several recent papers on higher-order (HO) controllers with automatic-reset. A modification 
of the two-step tuning of the constrained second-order derivative controllers based on integrator-plus-dead-time (IPDT) models is pro-
posed. In the first step, the linear controller is designed using the multiple real dominant poles (MRDPs) method to avoid the slowdown 
of the closed-loop dynamics due to the presence of slow poles. In the second step, the smallest time constant of the numerator of the 
MRDP-optimal controller transfer function is selected as the automatic-reset time constant. The derived control method was tested 
on a thermal system for the filament disc dryer to demonstrate the deployment, tuning, use and impact of controllers with increasing 
derivative degree in practical applications. It is shown that the use of HO controllers is similar to the traditional hyper-reset controllers 
(i.e. series proportional-integral-derivative [PID] controllers) from the user’s point of view. However, the advantages are faster transient 
responses while maintaining sufficiently smooth input and output shapes of the process with a minimum number of monotonic intervals. 
The overall design can be seen as a generalisation and discretisation of the Ziegler and Nichols graphical tuning method. One of the 
main new features is the consideration of a constrained control signal, as is typical for a pulse width modulated (PWM) actuator. Such 
actuators are often used in speed-controlled electric drives and in power electronics, among other applications.
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1.	 Introduction
Series proportional-integral (PI) and proportional-integral-derivative (PID) controllers were already in use before the 
Second World War under their original designation as controllers with automatic reset and hyper-reset controllers. 
In some industries, pneumatic and analogue electronic automatic-reset devices are still an important part of control 
solutions. However, since the early days of linear theory in automatic control, the terms PI and PID controllers 
have been adopted, although the equivalence between the two types of controllers only applies to unlimited 
control. Another important difference is that although the automatic-reset-based controllers have not been based 
on explicit process models for decades, recently they have been interpreted as the first model-based solutions 
with reconstruction and compensation of input disturbances based on integral process models (Bistak et al., 2024; 
Huba et al., 2023a). Such an explicit and saturation invariant disturbance reconstruction does not exist in parallel 
PI and PID controllers without anti-windup protection. The integral term in PI and PID controllers is considered as 
a heuristic solution that guarantees a zero permanent deviation of the output from the setpoint value even in the 
presence of constant input and output disturbances.

As shown in several papers on this topic (such as Huba et al., 2023a), the mentioned types of controllers are 
not equivalent under constraints. The automatic-reset controllers and the hyper-reset controllers provide implicit 
protection against the windup effect, while the classical PI and PID controllers require additional internal feedback 
to protect them from the windup effect. In general, the tuning of the PID controller may require more computational 
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effort than tuning a serial controller whose parameters can be directly derived from an integrating process model 
(Bistak et al., 2024).

Some misconceptions about controllers based on the auto-reset mechanism stem from the steps required to 
bring them to market, namely getting a patent protection by patent documents and writing a user manual. An example 
of the latter is Ziegler and Nichols’ (1942) tuning rules, which do not explain the hidden nature of the controller or 
the process models, but the recommended settings were determined experimentally. Therefore, such rules cannot 
be directly applied in the search for the optimal tuning of a completely new generation of controllers based on digital 
technologies. Therefore, new interpretations of the Ziegler and Nichols method in terms of controller structure and 
process model were needed (Glattfelder and Schaufelberger, 2003) and produced in Takahashi et al. (1971). The 
mentioned work was already based on the local approximation of the process model by the integrator-plus-dead-
time (IPDT) model and the three-term PID controller.

Even though the work by Ziegler and Nichols (1942) is the most frequently cited work on controller tuning, it 
cannot fulfil all practical requirements in its original version. Among the most frequently cited shortcomings are high 
overshoots and the oscillatory nature of transients (Buriakovskyi et al., 2022). In many mechatronic applications, 
e.g. in the speed control of electric drives, such transients are inadmissible. Therefore, a large number of other 
tuning rules were later developed based on a similar experiment of the process (see e.g Åström and Hägglund, 
2004; Hägglund and Åström, 2002 and the references therein).

From the digital processing point of view, the identification of the inflection point in the process step response 
is numerically problematic. The solution proposed in Huba et al. (2021a) eliminates the calculation of the inflection 
point and introduces the analytical, model-based design of the series controllers with automatic-reset and hyper-
reset. The mentioned work also illustrated the advantages of the automatic-reset and hyper-reset controllers, which 
have inherent anti-windup protection, compared to some additional ‘anti-reset windup’ blocks added to the ordinary 
parallel PID controllers.

Although the speed control system used in Huba et al. (2021a) has only a relatively low delay, a low-cost velocity 
sensor resulted in a relatively high measurement noise, which had to be attenuated by a low-pass filter. To ‘combat’ 
the reduced process speed due to the filter delay, a controller with higher-order (HO) derivatives (Bistak et al., 
2023) is proposed. By using the same fourth-order filter and the IPDT approximation as in Huba et al. (2021a), the 
complexity of the optimal analytical calculation of the HO controller did not increase. Again, it was not necessary to 
take any anti-windup measures to obtain monotonic step responses (if such responses are needed). The motivation 
for using HO controllers came from replacing the dead time of the loop with the increasing number of its Taylor 
series expansion elements. The use of HO controllers is not new. So far, however, they have mainly been used in 
fractional-order PID controllers (Tepljakov et al., 2018; Thomson and Padula, 2022) (which can be realised by the 
Ostaloup approximation with HO integer-order controllers).

Thus, both the HO automatic-reset based and the PID controllers offered an additional degree of freedom in 
controller tuning for time-delayed systems. The robustness of closed-loop responses due to unmodelled dynamics 
is a common denominator of the various existing contributions on this topic (Arulvadivu et al., 2022; Boskovic et al., 
2020; Ferrari and Visioli, 2022; Jung and Dorf, 1996a,b; Kumar et al., 2023; Kumar and Hote, 2021a,b,c; Oladipo et 
al., 2021; Sahib, 2015; Ukakimaparn et al., 2009; Veinovic et al., 2023; Visioli and Sánchez-Moreno, 2022; Zandavi 
et al., 2022). Some of the papers use the acronym from the proportional-integral-derivative-acceleration (PIDA) and 
the others from the second-order derivatives (PIDD2, or PIDD2). Another common feature of numerous publications 
is the use of numerical optimisation to find the controller setting. Since the pioneering work (Astrom et al., 1998), the 
range of different numerical optimisation and artificial intelligence methods has grown tremendously. Let us illustrate 
this growth with some recent approaches for optimising PIDA controllers:

• � For the automatic voltage regulator (AVR) of a synchronous generator (Sahib, 2015), minimised the integral 
of time-weighted absolute error (ITAE) using particle swarm optimisation.

• � The optimal design of a HO non-linear time-delayed system using a modified butterfly optimisation algorithm 
was addressed in Arulvadivu et al. (2022).

• � In Zandavi et al. (2022), the flight stability of a quadcopter in a noisy environment was investigated using a 
heuristic genetic filter design.

• � In Kumar and Hote (2021c), the output voltage regulation of a DC-DC converter was calculated using a 
modified Gray–Wolf optimiser.
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• � In Oladipo et al. (2021), a combination of the flower-pollinated algorithm (FPA) and the pathfinder algorithm 
(PFA) was used to regulate combined load frequency and terminal voltage control systems.

• � In Fawwaz et al. (2023), the AVR system was developed using whale optimisation, in Emiroglu and Gumus 
(2022), it was optimised using the coronavirus herd immunity optimiser and in Agwa et al. (2021), it was 
optimised using the Archimedes optimiser.

• � In Calasan et al. (2021) and Micev et al. (2021), the parameters of the PIDA controller for the AVR system 
are determined by the equilibrium optimiser, which belongs to the class of metaheuristic algorithms, etc. 
A broader overview of classical and intelligent PID tuning methods is given, for example, in Bansal (2021), 
Borase et al. (2021) and Saxena and Biradar (2022).

Although there is obviously great interest in the HO-PID controller, it is noticeable that the HO structures have 
not been applied to the tried-and-tested, industrially used controllers with automatic-reset. The terminological barrier 
mentioned earlier may be the best explanation for why it happened. In this paper, we will discuss some other issues 
related to the commonly used interpretation of PID control and its design, and we will present a wide range of new 
possibilities based on the traditional methods.

One way to make HO-PID controllers usable in practice is to use a common filtering of all controller terms. 
Using the PIDA controller as an example, Bistak et al. (2024) show that at least three differential equations must be 
solved to ensure separate filters for the first and second derivatives. It is therefore easier to implement a common 
filter for which it is sufficient to solve two differential equations. By solving three equations, a more effective noise 
attenuation can be achieved. For controller tuning, the multiple real dominant pole (MRDP) method is already 
used in an early textbook on automatic control (Oldenbourg and Sartorius, 1944). The MRDP method optimises 
the time-delayed systems by requiring equally fast dominant time constants, thus excluding slow components that 
would reduce the speed of the transients. The advantage of the method is that it can also be applied directly to 
quasi-polynomials with a dead time element. It has been shown that the MRDP method provides excellent results 
(Bistak et al., 2024; Huba et al., 2023a) when designing controllers up to a considerably high derivative degree m 
= 7. However, even higher controller degrees can be designed without major limitations. More important, of course, 
is the proof that such an increase in controller order brings a significant advantage in practice. It is worth noting 
that the widely used fractional order (FO) PID control ultimately leads to a controller implementation with even HO 
approximations (Tepljakov et al., 2018).

Another line of research has focused on investigating the effect of simple process approximations inspired by 
the pioneering work of Ziegler and Nichols (1942) and Huba et al. (2021a) and extended by the recently published 
requirements for practice-oriented design (Bistak et al., 2024). These approximations allow for an interpretation 
based on open-loop step responses, which correspond to IPDT models and are referred to as ultra-local models. 
In numerous situations, one may intuitively expect that more complex models (such as the first-order time-delayed 
model (FOTD); Huba et al., 2021a) or the second-order unstable-zero models (Alfaro and Vilanova, 2013) should 
provide more accurate results. However, numerous experiments have confirmed that the controller design with 
more complex models is not always better than the IPDT-based design. This raises the question of the extent to 
which the use of more complex models is justified when the actual structure of the controller used originates from 
simpler (e.g. IPDT) models. IPDT models simplify the process identification and controller design stages. They 
also make it possible to neglect the internal process feedback loops, which depend significantly on the external 
load. Such simplification is welcome, especially for higher derivative degrees m. In Huba et al. (2023a), the IPDT 
model was used for the automatic-reset based controllers with m ∈ [0,5]. However, the used upper bound for 
m was chosen only with respect to the space limitations of the article and, as shown in Bistak et al. (2024), it was 
already increased to m = 7, which may not be the final value. The increase in robustness of controllers based on 
simpler ultra-local IPDT models compared to more complex local FOTD can be generalised even further. The 
design of controllers based on IPDT models implies a more complex process where it seems necessary to use the 
HO models. In this work, we demonstrate this using the control of a filament dryer for FDM 3D printers (Briežnik 
et al., 2023). Similar to the HO-PID controllers, the HO derivatives can accelerate the transients in the closed loop. 
Increasing the speed requires considering the output limitations of the controller and using explicit integration and 
anti-windup circuitry. The conditioning technique (Hanus et al., 1987; Huba et al., 2021b) provides a successful anti-
windup protection, at least for the realisation of 1-DOF controllers. In addition, implicit control (Hanus et al., 1987) 
has the same or similar form as the controller with automatic reset. However, in some cases where the overshoot 
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of the limited input and output signals of the process should be prevented at all costs, this may not be the best 
control approach (Huba et al., 2021b). In the considered case of a filament dryer, the working temperature is set 
as high as possible, for example, just below the melting temperature of the medium, to shorten the drying process. 
In this case, transients with overshoot are therefore not permitted. For such control specifications, controllers with 
automatic reset (series controllers) with odd m prove to be more efficient (Bistak et al., 2023; Huba et al., 2023a). 
In these papers, the approach used in Huba et al. (2021a) was extended to all automatic-reset (series HO-PID) 
controllers tuned with the MRDP method. This fact can be considered as the most important aspect of the revival 
of the traditional solutions for automatic reset with positive feedback from the controller output. In order to take into 
account the limitations of the controller output, the numerator of the controller transfer function derived, using the 
MRDP method, must be factorised. The time constant of the automatic reset must be the smallest numerator time 
constant. However, the search for the smallest time constant becomes more complicated for even values of m if 
the numerator contains complex conjugate pole pairs. In such a case, the imaginary parts of the complex zeros 
can be neglected (Bistak et al., 2023; Huba et al., 2023a,b). The resulting double real zeros can still satisfy the 
absolute stability conditions based on the circle criterion for the controller with a saturation non-linearity (Huba et al., 
2023a,b). Here, absolute stability is achieved for arbitrary initial states. To summarise, the new contribution of the 
paper can be specified as the development of new tuning rules for constrained series controllers with second-order 
derivatives with the illustrative example showing application of HO automatic-reset based controllers to filament 
dryer for FDM 3D printing.

The rest of the article is organised as follows. Section 2 deals with summarising the results regarding the 
structure and optimal tuning of the automatic-reset based controllers with m ∈ [0,2] (i.e. series PI, PID and PIDA 
controllers) by the MRDP method. For constrained control, the MRDP tuning of series PIDA is modified by replacing 
the complex numerator transfer function zero of the controller with a double real one. The influence of such a double 
real approximation is analysed by searching for a single optional parameter based on the closed-loop performance 
measures. Section 3 shows and discusses the experimental results obtained by applying the derived PI, PID and 
PIDA controllers in the control of a filament dryer for FDM 3D printers (Briežnik et al., 2023). The conclusions 
summarise the obtained results of the work from a broader perspective.

2.	� Optimal PI, PID and PIDA Controller Tuning for IPDT Models by the 
MRDP Method

A process with the output y(t) and the input u(t) is described as follows

	
( ) ( )

( ) ( ) ( )0 0;  dpT s spKY s
S s S s e S s

U s s
−= = = � (1)

This is a two-parameter model specified by spK  and dpT . In some situations corresponding to the ‘nominal process’, 
it will be easier to omit the index p and work with the system parameters sK  and dT . The input of the controller is 
called an error.

	 ( ) ( ) ( )E s W s Y s= − � (2)

It represents the difference between the reference setpoint ( )W s  and the process output ( )Y s . The model-
based approach, formulated for an integral process model described by a differential equation '  .   . '  /s iy K u d y dy dt= + = ,  
reconstructs the value of a constant input disturbance irecd  as the difference between the estimated input of 
the process   ' /a su y K=  and the output of the (constrained) controller ru  as   ' /   irec s rd y K u= − . The calculation of the 
reconstructed disturbance must be supplemented by a low-pass filter ( )RF s  with a time constant iT  (see e.g. Bistak 
et al., 2023; Huba et al., 2023a).

	
( ) 1

1R
i

F s
T s

=
+ � (3)
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By choosing the time constant iT  to be significantly larger than the time constant of the closed loop transients, the 
first term ' / sy K  can be neglected in the vicinity of steady states and the disturbance value can simply be calculated 
as   irec rd u=− . Since id  must be compensated by irecd− , it is possible to set up a positive feedback loop that modifies the 
output of the stabilising controller PR  in combination with a low-pass filter nQ  (Bistak et al., 2023; Huba et al., 2023a,b) 
(explained later) (see Figure 1). In the presence of a time delay dT  in Eq. (1), this can be replaced by developing to 
a Taylor series with a gradually increasing number of members, which increases the order of the equivalent transfer 
function S and thus also the order of the required control vector, which is suggested, for example, by using the 
state-space approach. Its special case is the phase vector, which is formed from the output and its derivatives. In 
this article, we will gradually increase the order of the stabilising controller, starting with a proportional controller pK  
up to a proportional-derivative-accelerative (PDA), with the gains , , p d aK K K , which is described as follows

	 ( ) 2
p p d aR s K K s K s= + + � (4)

The resulting structure with the positive feedback can be described as a series-proportional-integral-derivative-
accelerative (PIDA) controller. It should be emphasised once again that the time constant iT  of the automatic reset 
can only be defined as an integration time constant in the zone of proportional control if it applies to the transfer 
function of the closed control loop (Eq. (5)).

In the case of a nominal plant (Eq. (1)) specified with sK  and dT , the PIDA controller
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results in
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� (6)

From a formal point of view, we obtain the relationships describing the PI controller by setting 0d aK K= = . In 
the case of a PID controller, 0aK =  must be taken into account. Once again, it should be noted that the positive 
feedback from the output of the constrained controller gives the series PIDA transfer function (Eq. (5)) only for the 
unconstrained output of the controller, i.e. in the proportional zone of the control, if the always present limits are not 
exceeded: 

	 [ ],min maxu U U∈ � (7)

However, the equivalence of the automatic-reset-based controllers with the parallel PI, PID and PIDA controllers 
with the same transfer function in the vicinity of the steady states does not mean that their general equivalence 
applies to any initial states. In the case of constrained control, the positive feedback of the automatic reset cannot 

Figure 1. 2DoF HO automatic-reset (series HO PID) controller using a HO stabilising PDm controller ( )pR s  (Eq. (4)) with a low-pass implementation 
filter ( )nQ s  (Eq. (9)), setpoint w, input disturbance id , output y, measurement noise δ , measured output ( )my t , the automatic-reset in form of a positive 
feedback filter ( )rF s  (Eq. (3)) with the time constant iT  for reconstruction of an input disturbance irecd , saturation non-linearity accomplishing Eqs (7) and 
(8) and prefilter ( )pF s  (Eq. (20)). HO, higher-order; PID, proportional-integral-derivative.
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change the output of the stabilising controller with a signal that exceeds the limits of Eq. (7). In contrast, the I-action 
value of parallel controllers can still grow indefinitely, which further significantly changes the dynamics of the system 
after reaching a narrower range of desired states. This then affects the necessary changes to both solutions. The 
excessive integration (windup) of integrating controllers that occurs under constrained control can be reduced by 
various anti-windup schemes (Huba et al., 2021b, 2023b). On the other hand, to ensure the correct operation of 
automatic-reset controllers based on the feedback of the saturation non-linearity output: 

	

( ) { }
/ ;

;
\

max max

L L min L max

min min

U u U
u t sat u u U u U

U u U

>
= = − ≤ ≤

<
� (8)

which is added to the P, PD or PDA output Lu ., only a suitable tuning of the controller parameters, including the time 
constant iT , is required.

2.1.  Design of controller filters
The implementation of derived PD and PDA controllers (Eq. (4)) requires the design of low-pass filters that guarantee 
at least a proper transfer function. The minimum number of unknown filter parameters corresponds to a single 
binomial filter ( )nQ s  with a sufficiently high relative degree n (Bistak et al., 2023)

	

( ) ( )
( ) ( ) ( )

1 1

1
f

n n
nf

Y s
Q s

Y s P sT s
= = =

+
� (9)

The equivalent filter delay can already be taken into account when approximating the process with the IPDT or 
FOTD model, as in Huba et al. (2021a) and Bistak et al. (2023), or the filter delay can be approximated by a chosen 
delay equivalence (Huba et al., 2023b), where the process delay dpT  is extended into the ‘total’ loop dead time by 
an ‘equivalent’ filter delay eT

	 d dp eT T T= + � (10)

This is much simpler than solving the filter parameters separately for the derivative and for the acceleration 
component of the controller (Ferrari and Visioli, 2022; Kumar and Hote, 2021c; Visioli and Sánchez-Moreno, 2022). 
As the derivative degree increases, this unnecessarily increases the number of filter time constants used, and the 
inclusion of different delays in particular controller channels complicates the analytical design (Bistak et al., 2024).

eT  in Eq. (10) can be calculated by various equivalences (Huba et al., 2023b), e.g. according to

	 [ ];  0.5,1 e fT nNT N= ∈ � (11)

where the weighting parameter N  is specified by values from 0.5N =  (equivalence based on the ‘half rule’) to 1N =  
(equivalence based on the ‘average residence time’).

2.2.  Optimal MRDP controller setting
Since the speed of the transients depends predominantly on the slowest mode of the solution, slow modes of 
control can be eliminated by the MRDP method. Such a design also takes into account the fastest components of 
the solution, which are critical from the point of view of overshoot and oscillations (solution stability). The advantage 
of the real multiple pole condition is its simple determination. For a controller of derivative degree m, the dominant 
pole multiplicity depends on the number of unknown parameters of the controller 2m + . Another unknown is the 
position of the pole itself, i.e. there are a total of 3m +  unknown parameters. For the most complex PIDA controller, 
a total of five unknowns must be determined. In order to calculate the corresponding dominant pole, the equations

	
( )

0

0; 0,1, , 2
i

i
s s

d A s i m
ds

=

 
= = … + 

 
� (12)
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must be fulfilled, where

	
( ) ( )( )2 2 1dT s

i s a s d s p iA s s T e K K s K K s K K T s= + + + + � (13)

is the characteristic quasi-polynomial of Eq. (6). In general, the location of the optimal MRDP pole 0 01/s T= −  
(Arulvadivu et al., 2022) is

	
( )( )0 2 2 / ds m m T= + − + � (14)

For series PI controller with 0a dm K K= = = , the following controller parameters are obtained (see e.g Huba 
et al., 2021a).

	
( ) ( ) ( )2 2

0

2 2 1 2 10.46122 2 / 0.5858/ ; ; 5.8284
10 2 14

d
d d p i d

s d s d

e T
s T T K T T

K T K T

−− −
= − ≈ − = ≈ = ≈

−
� (15)

For PID controllers with 1m = ; 0aK = , it is possible to obtain a set of MRDP controller parameters with the 
smallest possible Ti for the stabilising controller ( ) ( )1p d p DR s K K s K T s= + = +  in Figure 1 (see e.g. Huba et al., 
2021a,b) as

	
( )0

0.0598 0.20623 3 / 1.2679/ ; ; 0.2846 ; 3.4475 ; d d p i d D d d p D
s d s

s T T K T T T T K K T
K T K

= − ≈ − ≈ ≈ ≈ = ≈ � (16)

Compared to the PI controller, the value of iT  is significantly smaller, which has an impact on the disturbance 
reconstruction and compensation. In addition to the reduced value of pK , the strengthening of the derivative 
component dK  also contributes to stability.

In the case of the most complex PIDA controllers with 2m = , the solution of ( )4 4d /d 0A s s =  corresponding to the 
dominant pole 0s  (or the equivalent time constant 0T ) results in

	 0 0 02/ ; 1/ /2d ds T T s T= − = − = � (17)

The remaining Eq. (12) then results in Huba et al. (2023b)

	

0.9323 0.3885 0.0451; ; ; 2.5832p d a i d
s d s d s

K K K T T
K T K T K

= = = = � (18)

The corresponding time constants of the controller’s numerator are

	
2 2/ 0.4168 ;  / 0.0484D d p d A a p dT K K T T K K T= = = = � (19)

is important for tuning the controller with two degrees of freedom (2DoF). Since the PI, PID and PIDA controllers 
with one degree of freedom (1DoF) result in setpoint step responses with a high overshoot, 2DoF controllers can be 
proposed by introducing a prefilter that removes the zeros from the ( )cF s  (Eq. (6))

	
( ) ( )( )

3 2
3 2 1

2 2

1
1 1p

A D i

b s b s b sF s
T s T s T s

+ + +
=

+ + +
� (20)

For PID, 2 0AT = , for PI 2   0A DT T= =  and the numerator degree must be reduced accordingly. For constrained 
control, the simplest and most robust choice is to set

	 3 2 10;  0;  0b b b= = = � (21)
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in Eq. (20). As in Viteckova and Vitecek (2016), an acceleration of the setpoint step responses is possible by 
designing the ( )pF s  numerator, which can be used to cancel at least one time constant in the closed control loop 0T  
(Eq. (17))

	 3 2 10;  0;  /2o db b b T T= = = = � (22)

An overview of the dependence of the optimal setting on the degree of derivative m used is best obtained by 
using dimensionless parameters in Table 1. It shows that the dominant time constant of the circuit 0τ  becomes 
shorter as m increases, while even for 0m =  and 2m = , it is significantly smaller than the automatic-reset 
time constant iτ . With unconstrained control, the MRDP PI, PID and PIDA controllers provide ideal shapes of 
responses characterised by a minimum number of monotonic segments at the process input and output after 
both setpoint and input disturbance steps. However, with limited control, MRDP-optimal controllers can lead 
to the overshoot of output and input. Since such imperfections occur in parallel PI, PID and PIDA controllers 
even when using the anti-windup modifications based on the conditioning technique (Huba et al., 2021b), 
the first question was therefore whether it is at all possible to avoid them with a modified controller setting. 
Basically, this effort is equivalent to achieving absolute stability of the given constrained system (Follinger, 
1993; Glattfelder and Schaufelberger, 2003; Haddad and Chellaboina, 2011; Khalil, 1996; Lima, 2021; Popov, 
1961). When using a PI controller, there is no possibility to fulfil the condition of absolute stability. In the case 
of PID control, this corresponds to the parameters Eq. ((16)).

2.3.  Constrained series PIDA controller tuning
The optimal setting of the constrained series PIDA controller was first optimised numerically using the performance 
portrait method (PPM) (Huba et al., 2023c). It was derived by mapping the closed-loop performance for different 
controller settings and selecting the best controller parameters as those that give the minimum integral of absolute 
error (IAE) corresponding to the performance specified by the monotonicity-based performance measures of the 
disturbance responses

	 ( ) ( )1 1; ; 0.001≤ ≤ = =d yd d ud yd udTV y TV u    � (23)

with

	

( ) ( )
( ) ( )
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1 1 0 0
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∞ ∞

∞ ∞

+

+

= − − − − ∉

= − − − − ∉
∑
∑

� (24)

Thereby, maxy  and maxu  represent the extreme points separating two monotonic segments of one-pulse (1P) 
disturbance step responses at the input and output of the process (Huba et al., 2021a). Several series of experiments 
finally resulted in the optimal setting of the constrained PIDA controller

	

2 20.17 0.45 0.1157;  ;  ;  0.36 ;  / 2.65 ;  / 0.681d
p d a i d D d p d A a p d

s d s s

TK K K T T T K K T T K K T
K T K K

= = = = = = = = � (25)

Table 1.  Dimensionless MRDP-optimal parameters of series PIDA controller, { }2 2
0 0 / , , / , / , / , 0,1 ,  2d p s d i i d D D d A A dT T K K T T T T T T T mτ κ τ τ τ= = = = = ∈  

corresponds to the used derivative degree.

m = 0 m = 1 m = 2

τ0 1.7071 0.7887 0.5000

κ 0.4612 0.059 0.9323

τi 5.8284 0.2846 2.5832

τD 0 3.4475 0.4168

τA 0 0 0.0484

MRDP, multiple real dominant pole.
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With respect to the MRDP-PIDA parameters (Eq. (18)), pK  and iT  decreased and dK  and aK  increased. Increased 
values were also obtained for the time constants DT  and 2

AT . Figure 3 shows the transient responses corresponding 
to 1dpT =  and the filter ( )4Q s  tuned according to Eq. (11) (  in Eq. (9)) with 1N = , 0.8eT =  and / 0.2f eT T n= = . With 
the aim of having ‘tight control signal constraints’, these were chosen separately for setpoint and disturbance 
responses and with a view to ensuring the possibility of reaching steady states. The simulation results obtained 
confirm that fast and smooth transients without overshoot are achieved at both the process input and output. Fast 
transients at the process input and output also lead to a faster reconstruction of the external input disturbances, 
which have to be compensated by automatic-reset.

In engineering, we are used to working with estimates of individual process parameters that have a certain final 
accuracy. However, from a practical point of view, it is always interesting to know how the steps of the dimensionless 
values ∆κ, ∆τD, ∆τA and ∆τi used to check the optimal controller parameters in the four-dimensional parameter 
space κ = p s dK K T , /τ =D D dT T , /τ =A A dT T  and /τ =i i dT T , which consists of 104 = 10,000 points, affect the achieved 
accuracy of the solution found (Eq. (25)). In general, the achieved accuracy of the optimal setting can be increased 
by decreasing the individual values ∆, which leads to an increase in the number of points considered for a given 
neighbourhood size. The other option is to ‘zoom in’ by reducing the neighbourhood by the previously found ‘optimal’ 
tuning while keeping a fixed number of evaluated points.

2.4.  ‘Suboptimal’ 1D APR-PIDA controller tuning
Although the optimal tuning (Eq. (25)) was calculated by searching among the results of 10,000 simulations, the 
actual number of evaluated points, when including the experiments made to obtain some relevant neighbourhood 
of Eq. (25), was significantly higher. Therefore, it is of great practical importance to search for some suboptimal 
tuning methods that allow experimentally finding a near-optimal controller with a significantly lower number of 
evaluated points (Huba et al., 2023b,c). The aim of such modifications was to generalise the series PID controller 
(Huba et al., 2021a), where the time constant of the automatic reset is determined by factorising the numerator of 
the MRDP controller and choosing iT  as the smallest time constant. Such an approach does not affect the excellent 
performance of the linear MRDP controllers, but allows to modify the dynamics of the constrained non-linear system 
with saturation. However, in the case of the PIDA controller, the factorisation is not fully applicable due to the 
complex conjugate zero of the numerator of the MRDP controller Eq. (5) 2 2 2 21 0.0484 0.4168 1A D d dT s T s s T T s+ + = + + , 
expressed as

	 ( )1,2 4.3058 1.4565 / ds j T= − ± � (26)

The single real zero in the numerator results in a too long time constant for the automatic reset 2.5832=i dT T ,  
which leads to slow transients with overshoot at saturation (Astrom and Hagglund, 1995, 2006; Kothare et al., 
1994). By neglecting the imaginary part in Eq. (26), it was possible to obtain a double real pole 1,2 4.3058/ ds T= − , 
which corresponds to the much shorter double real numerator time constant 2 2.5832i dT T T=

	 2 /4.3058 0.232d dT T T= ≈ � (27)

Such a modified nomination for iT  makes it possible to change the dynamics of the automatic reset at the 
transition from the saturation limit to the steady state and thus prevent overshoot. Since the transfer function of the 
controller remains almost the same, the dynamics of the linear system do not change significantly. With the new 
choice 2iT T= , the modified equations of the controller become

	

( ) ( ) ( )( )( ) ( )( )2 2 2
2 2 2

2

1 11 1 1 1 1 D A ii i
P P P

i i

T s T s T sT s T s T s T s T s
K K K

T s T s T s
+ + ++ + + + +

= = � (28)

which can be rearranged to

	

2 22
2 2 2; ; ; ; ; .
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TK K T T T T T K K T TT K K T
T

= = = + = = = � (29)

4n =
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If we start the recalculation with the MRDP controller (Eq. (18)), we obtain the PIDA1 controller

	

2 20.9323 0.232 0.0837 0.236 0.0502; 0.2320 ; 2.8152 ; ; 0.5993 ;
2.5832

d
p i d D d d A d a

s d s d s s

TK T T T T K T T K
K T K T K K
⋅

= = = = = = = � (30)

The usefulness of the proposed tuning modification was confirmed by applying the circle criterion of absolute 
stability (Huba et al., 2023a,b,c). For the given non-linear circuit and saturation-type non-linearity, it was shown 
that the tuning based on Eqs (27)–(29) guarantees absolute stability for arbitrary initial states. However, from the 
point of view of practical applications, it was necessary to further pay attention to situations where the requirement 

2 0.232 dT T≠  is not exactly fulfilled. The given problem was clarified by simulating the circuit with the variable 
value [ ]2 2 2/ 0.2,0.4 , 0.05τ = ∈ ∆τ =dT T  (see Figure 2). In order to achieve a dominant influence of the control signal 
constraints, these were chosen as tight as possible. To enable a stable state to be achieved, it was necessary to 
select different constraints for setpoint and input disturbance steps.

The obtained performance measures in Figure 2 show that for setpoint step responses, the choice of 2 0.232τ =  
represents the optimal value in terms of a near-zero deviation of the controller’s output from its ideal 1P shape. If 

2 0.2τ <  is further reduced, the measured shape deviations increase already relatively sharply. The shape deviations 
for 2 0.232τ >  increase slowly, the values of the IAEs also increase in a similar way. However, at the same time, 
the performance measures of the disturbance step responses improve, approximately up to the 50% of the higher 
value of 2τ , which corresponds to the simple replacement of the MRDP setting. For 2 1.5*0.232τ = , the set of settings 
corresponding to the PIDA2 term can then be calculated

	

2 20.126 0.368 0.1130.348 ; ; 2.931 ; ; 0.899 ; d
i d p D d d A d a

s d s s

TT T K T T K T T K
K T K K

= = = = = = � (31)

Obviously, it works with higher gains than PIDA1 (Eq. (30)), and in view of the better disturbance response, 
it is expected to be used for controlling processes with significant deviations of the dynamics from the IPDT 
approximation used.

It is also worth mentioning that PIDA1 can perform better than PPM-PIDA. This is due to the fact that in PPM 
the optimal setting was determined only by evaluating disturbance step responses and that examining the possible 
settings of individual parameters with the finite ∆ values yields only finite accuracy in the search for the optimum.

The responses in Figure 3 show the comparison of MRDP-PIDA, PPM-PIDA, PIDA1 and PIDA2 controllers. 
The reconstructed disturbance was also recorded to illustrate the long overlooked function of automatic-reset as 
the simplest disturbance observer. The responses confirm that when MRDP tuning is used, overshoots of the 
output and input of the process occur as a result of control constraints. The use of PPM-PIDA led to a significant 
improvement in the transients achieved. However, its calculation is significantly more demanding than the changes 

Figure 2.  Impact of numerator time constant 2τ  selection of PIDA1 control for different low-pass filter degrees n ( 2 2[0.16, 0.42], 0.02τ ∈ ∆τ = ) on 
performance of setpoint responses ( 0.1, 0.1max minU U= = − , left) and disturbance responses ( 0.1, 1.1max minU U= = − , right). IAE, integral of absolute error.
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made in the calculation of the PIDA1 and PIDA2 controllers. While PIDA1 provides slightly better transients for the 
setpoint responses, PIDA2 is significantly better for the disturbance responses.

3.	 Application to Filament Dryer for FDM 3D Printing
The control objectives, basic design features and achieved properties of the filament dryer for FDM 3D printing 
(Figure 4) were recently published in Briežnik et al. (2023). In the temperature control required to dry the material as 
quickly as possible, it is necessary to ensure that the temperature values that may cause damage to the structure 
and the dried material itself are not exceeded. To be able to work with the new material as quickly as possible, 
the proposed temperature control system should of course work as close as possible to the structural limits of the 
system. At the same time, the system should be sufficiently robust so that it does not depend on the differences 
resulting from the different temperature properties of the actual material used. Next, we show the closed-loop results 
of a series PI, PID and PIDA controllers tuned according to a step response identification experiment inspired by 
Ziegler and Nichols (1942).

3.1.  Step response-based process approximation
Ziegler and Nichols’ original method was based on determining the tangent that passes through the inflection point 
of the measured process step response curve. Such a tangent can be used to determine the parameters of the 
IPDT and the first-order time-delayed process model (FOTD). Because finding a tangent line is a mathematically 
ill-conditioned problem, we have replaced it with a simple approximation using the least squares method (Huba 
et al., 2021a). The identification method finds the solution with the largest dead time value or model gain among 
different possible models. In the case of the IPDT approximation, the selection of the largest gain or dead time can 
be justified by a more detailed analysis of the closed-loop robust stability. Similarly to Huba et al. (2023b) or Huba 
et al. (2021a), the noise filter at the input of the controller was assigned to the controlled process, so it was not 
necessary to consider it as an additional equivalent delay eT  in Eq. (10). The disadvantage of such a method is that 
we cannot simply change the filter parameters without redrawing the new filtered response. However, the approach 
proposed here is simpler. The IPDT model of the system, including the fourth-order filter with 50 sfT =  (see Figure 5), 
gives the parameters

		
4 18.31 10  K (Vs) ; 74.5 ss dK T− −= ⋅ ⋅ = � (32)

Figure 3. Setpoint and input disturbance step responses of constrained series MRDP-, PPM-, PIDA1 and PIDA2 controllers with 0.1, 0.1max minU U= = − ;  
for the unit setpoint steps and 0.1, 1.1max minU U= = −  for the unit input disturbance steps, filter ( )4Q s  with 0.8eT = ; / 0.2f eT T n= = , 1sK = , 1dpT =  and the 
sampling period 0.001sT = . MRDP, multiple real dominant pole; PPM, performance portrait method.
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Figure 5. Measured step response of the system and its filtration achieved by application of the 4th order filter ( )4Q s  (Eq. (9)) with 50fT =  s.

Figure 4. Filament dryer schema.
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As far as the unfiltered signal is concerned, the applied filter does not lead to significantly slower transients.

3.2.  Closed loop step responses
The heating element is supplied by a transistor, which is switched by pulse width modulation (PWM) generated by 
the Arduino UNO microcontroller. The maximum supply voltage is 24 V. The sampling period was set to 0.5 s. The 
duty cycle in Figure 6 below corresponds to the limited pulse width of 0–255. The measured step responses of the 
closed loop in Figure 6 show that the temperature of the heater does not exceed the reference value of 80°C, and 
by increasing the derivatives of the controller order, the transients accelerate. Using an MRDP PID controller with 
numerator factorisation of the calculated transfer function by selecting the smallest numerator time constant as iT  
confirms the improved closed loop dynamics. The factorisation of the transfer function of the MRDP PIDA controller 
has a similar effect and the step response of the output remains almost monotonic despite the limited input.

4.	 Discussion
Although the signal measured during identification has a measurement noise, the control signal of the PIDA 
controller is also sufficiently smooth and efficient. It is also clear to see that increasing m (the number of derivative 

Figure 6. Closed loop step response at the input and output of the system and its filtration achieved by application of the 4th order filter ( )4Q s  
(Eq. (9)) with 50fT =  s and PI (Eq. (15)), PID (Eq. (16)) and PIDA (Eq. (29)) controllers. PI, proportional-integral; PID, proportional-integral-derivative.
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terms) clearly contributes to the acceleration of the transients. Obviously, with the given filter ( )4Q s  and the IPDT 
model (Eq. (32)), it would be possible to further increase the range of controller derivatives used (see e.g Huba 
et al., 2023a) and thus increase its robustness and the speed of the transients.

5.	 Conclusions
The presented work is part of a broader research in the field of generalisation of industrial automatic reset and 
hyper-reset controllers when using HO derivatives and tuning controllers by the MRDP method. The results 
obtained show that despite the invention of the automatic-reset and hyper-reset controllers and tuning methods (by 
Ziegler and Nichols) in the 1940s, the advantages of the controller structure have not been sufficiently recognised 
by the scientific community. The analysis of the controllers mentioned here enables further generalisations and 
implementation in practice owing to the increase in the robustness of the controllers. The precise design of automatic-
reset and hyper-reset controllers inspired by the Ziegler and Nichols tuning method can overcome their traditional 
limitations, which is particularly welcome in the field of mechatronics. The given analysis is particularly important 
when trying to transfer the historical hardware solutions into discrete programmable devices, embedded systems, 
sensors and actuators. The proposed solutions were tested in practice, where they showed high robustness, which 
can also significantly simplify process identification. Another important advantage is simplified filtering with implicit 
constrained control, which is crucial for successful PWM control.
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