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1.	 Introduction
The web-winding machine is used in many manufacturing systems, such as steel industries, processing paper, 
textiles, and film processes (Hou et al., 2016; Ponsart et al., 2010; Pagilla et al., 2007). The objective of a winding 
machine is to produce a strip with precise mechanical properties defined according to the tension web. The goal 
is to control the strip tension under the constraints of web velocity. Hence, the control of tension and speed of the 
continuous strip processing line is one of the most interesting applications needing high performance during system 
operation, where the components may encounter faults, such as uneven wear or fracture of the bearings and 
linkages, converter power loss and demagnetisation, and the open-circuit fault in an inverter leg, which can degrade 
the product quality and prevent continuous operation. Additionally, there are uncertainties and disturbances during 
the winding process (Hou et al., 2016). For this reason, it is highly motivating to use fault tolerant control (FTC) for 
improving system availability and reliability and reducing economic loss.

All the approaches to FTC can be categorised into two groups: active and passive (Elbakri and Boumhidi, 
2020; Klimkowski, 2016; Medjmadj, 2019). The active approach requests a module for fault detection and isolation 
(FDI) in order to reconfigure the controller (Klimkowski, 2017). It has the capability to treat many types of faults. 
Nevertheless, it is sensitive to the result acquired from FDI and its design is hard for nonlinear systems with 
uncertainties. The passive approach is based on robust control. It does not require an FDI unit, and it has a fixed 
structure and parameters. It is fast enough to act rapidly in any irregular situation, but is proficient enough to 
accommodate only some faults established at the design stage.

In this respect, numerous FTC strategies have been proposed in the literature (Ponsart et al., 2010; Rodrigues et al., 
2013; Xiao et al., 2011). The approaches are established based on the linear model suppositions of the system, such 
as the linear time invariant model (Xiao et al., 2011), the linear time variant model (Ponsart et al., 2010), and the linear 
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parameter varying model (Rodrigues et al., 2013), where the nonlinear characteristics and coupling relationship between 
velocity and tension are not considered during the system modelling. In Ponsart et al. (2010), the authors established a 
FTC method for the nonlinear model of the system in order to decrease only the influence of the sensor fault.

To reply to the existing disadvantages and improve the performance of FTC in our research, we developed a new 
design of the FTC system for an unstable, non-linear, strong coupled, and multivariable system: a winding machine 
in the presence of sensor fault with uncertainty and disturbance. The objective of the proposed FTC system is to 
maintain current performance close to desirable performance and preserve stability conditions and robustness. 
The suggested approach is based on the combination of backstepping (Bodó and Lantos, 2019; Dashkovskiy and 
Pavlichkov, 2018; Haouari et al., 2020; Yu et al., 2018) and the RST controller (Ali et al., 2016; Brahim et al., 2017; 
Jiang et al., 2018; Khadraoui et al., 2014) to attain high performance against the occurred faults. The stability of 
the closed-loop system of the proposed controller is demonstrated based on the Lyapunov theory (Elmahfoud et 
al., 2020; Herizi and Barkat, 2019; Mohamed et al., 2020). Simulation results have shown the effectiveness and 
superiority of our proposed control law.

The remaining parts of the paper are organised as follows. Section 2 introduces the modelling of the winding 
machine. Section 3 describes concisely the RST algorithm for linear systems, while the developed FTC algorithm 
is described in Section 4. Simulation results are discussed in Section 5 and conclusions are drawn in Section 6.

2	 Modelling of the Winding Machine
The winding process, presented in Figure 1, is composed of three reels driven by three motors, and the gear 
reduction is coupled with the reels. The three motors correspond to the unwinding reel, traction reel, and rewinding 
reel, respectively. The dynamic behaviour of a winding machine can be designated using a multivariable and 
nonlinear state space representation by the following equations (Chu et al., 2019).
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Fig. 1. Three-motor web-winding pilot system.
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with 
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π ρ
π  being a parameter that depends on the system characteristics and i = 1, 2, 3, .....

The term fci brings together the different parameters of the system. Thus, a change in the values of these 
parameters changes the value of fci which is multiplied by the square of the speed, so this term has a considerable 
influence on the dynamics of the system.

Where t1 and t2 are web tensions v1, v2, and v3 are web velocities, ωi are angular velocities, Ri are real-time 
radius of the ith reel, L1 and L2 are the web length for the first and second span, t0 is wound-in web tension in the 
unwind roll, ui is input torque from the driving motor Mi, bi is friction coefficient of the ith roll shaft, ni is gearing 
ratio between the motor shaft and the corresponding roll shaft, Ji is the effective inertia of the ith roll, E is young’s 
modulus, Sa is cross-sectional area of the web, ρ is density of the web, b is width of the web, and h is thickness 
of the web.

In the real situation of the web-winding system, there are present uncertainties in Ri, Ji, E, and bi.
The variables, ti and ωi, can be measured via tensiometers and tachometers, and the variable vi can be acquired 

by vi = Riωi; in that case, all the states are available by various sensors. 

3.	 Linear RST Controller Algorithm
In a single-variable setting, the RST controller is a linear control device made of three polynomials R(s), S(s), and 
T(s) that must be definite in order to achieve efficient control; it is the controller with the maximum flexibility of 
application. The polynomials R(s) and S(s) tolerate the creation of a feedback control in order to reject disturbances 
and be robust to uncertainties; on the other hand, the polynomial T(s) is added to the feed-forward to improve 
tracking. Figure 2 depicts the RST controller’s overall construction, where G(s) is the transfer function of the 
system, r represents the reference input, ps is the disturbance, ys is the output signals, and us is the control signals.

The RST controller is founded on the pole placement theory, which entails fixing polynomial P(s) or, equally, 
their roots, i.e. the poles of the closed loop system, in advance. We are led to calculate polynomials R(s) and S(s) 
such that the Diophantine equation can be satisfied or similarly admits a solution if and only if P(s) is a multiple of 
the greatest common divisor of A(s) and B(s); the controlled system’s stability is verified if and only if the roots of the 
polynomial P(s) and are all located in the left half-plane.

The output of the system is described as follows:

	 ( ) ( ) ( )s sy s G s u s= 	 (2)

where G(s) = B(s)/A(s) and s is the Laplace variable.
The RST controller is specified by 

	 s s s( ) ( ) ( ) ( ) ( ) ( )B s u s S s y s T s r s= − + 	 (3)

Fig. 2. Structure of RST controller.
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The polynomials R(s), S(s), and T(s) are specified by the following rules: The polynomials R(s) and S(s) are 
solutions of the Diophantine equation (Ali et al., 2016).

	 ( ) ( ) ( ) ( ) ( )P s A s S s B s R s= + 	 (4)

where the roots of the polynomial P(s) are established by means of the desired closed-loop poles.
The closed loop system is given by the following equation:

	

( ) ( ) ( ) ( )(s) ( ) ( )
( ) ( )s s s

B s T s S s B sy r s p s
P s P s

= + 	 (5)

Let us denote by deg(P) the degree of the polynomial P(s). The rejection of disturbance ps is confirmed by 
choosing S(0) = 0. 

The RST controller can guarantee a zero steady-state tracking performance error by taking the polynomial T(s) 
constant and satisfy the condition T(0) = R(0). 

The polynomial R, S, and T must verify the conditions: deg(P) = deg(A) + deg(S)  and deg(S) = deg(R) + 1. 
As a result, deg(R) ≥ deg(A) and deg(A) = na; at that point, we can conclude that

	

a
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	 (6)

4.	 RST-Backstepping Controller Synthesis 
The suggested FTC approach is based on a modified backstepping technique in which the stability is demonstrated 
in five steps utilising the Lyapunov theorem. This method enables high precision control and high-performance 
output tracking by ensuring that the error dynamics converge to zero asymptotically (Arsalan et al., 2018; Haouari 
et al., 2019; Karabacak and Eskikurt, 2011; Li et al., 2017). However, the backstepping-based controller fails to 
eliminate steady-state output errors due to parameters’ uncertainties, disturbances, and faults. Then, in the final 
stage of backstepping control, when the polynomial coefficient gains are nonlinear, a nonlinear RST control action is 
introduced to assure high-precision control of the steady-state output. The primary idea behind the resultant method 
of RST-backstepping control is to construct a recursive controller in which the control laws are designed using 
state variables as virtual control signals, causing the stability of lower order subsystem. Finally, the real dynamic 
signal comes into the system loop controller; the suggested control system is designed step-by-step to improve 
the winding machine control performance. The schemas of the closed loop system using RST-backstepping are 
illustrated in Figure 3.

The state space model of the considered system can be formulated as follows:
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In the first step, we determine the virtual control that ensures the asymptotic convergence of the tracking error 
to zero (Chen et al., 2015; Haouari et al., 2018; Liu et al., 2018; Mohamed et al., 2020).

To proceed with the design, an error e1 = x1 – x1d is described as the difference between the actual and the 
desired tension outputs. Its dynamic is given as

	 1 1 1d 1 1 2 1de x x f a x x= − = + −    	 (8)

Also, describing the second error e2 = x2 – x2d, we then obtain

	 1 1 1 2 2 1d( )de f a e x x= + + −  	 (9)

The error dynamics can be stabilised if the virtual control input x2d is taken as follows:

	
2 1 1d 1 1

1

1 ( )dx f x e
a

= − + − λ 	 (10)

Then the dynamic of e1 can be simplified into the following form:

	 1 1 1 1 2e e a e= −λ + 	 (11)

Let us confirm the tracking error stability by taking the Lyapunov candidate function 2
1 10.5V e= . 

Its derivative is given as 1 1 1V e e=  , at that time 2
1 1 1 1 1 2 1 1 1 1 2( )V e e a e e a e e= −λ + = −λ +  where λ1 must be a positive 

constant.
In the second step, a Lyapunov function, V2, is established to guarantee convergence of the errors to zero, as 

follows: 2
2 1 20.5V V e= + .

Then consider the time derivative of the Lyapunov function 2
2 1 1 1 1 2 2 2V e a e e e e= −λ + +

 . 
Since the main objective is to provide a robust performance with almost zero steady-state error, a concept of 

RST control action term is added (i.e., RST-backstepping strategy is adapted).

Fig. 3. Schemas of the closed loop system.
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In the case of linear RST control, with S(s) = α01 + α11s + α12s2, R(s) = β01 + β11s and T(s) = γ01 + γ11s + γ12s2, the 
formula 01 11 21 01 11 21 01 11s s s s s s s su u u r r r y yα + α + α = γ + γ + γ − β − β    

 
represents the relationship between the output ys, 

reference rs, and the input us. 
By applying the algorithm given in Section 3, we can find α01 = 0 and γ01 = β01, so the relationship between the 

input control u, output y and reference r can be written as

	

2

11 21 01 11 21 01 112
d d
d d

s s
s s s s s

u u r r r y y
t t

+ = + + − −  α α β γ γ β β 	 (12)

However, in the situation of a nonlinear control by RST-backstepping, the only change in the last equation is 
that the constant coefficients α12, α11, γ11, γ21, β01, and β11 become nonlinear function gains depend on the system 
nonlinearity and also by applying this to the subsystem ẋ2 = f2 + a2u1, by using the corresponding variables, the input 
u1, the state x2 which is correspond to the output of the subsystem and the reference x2d, one gets that input control 
u1 can be defined as

	

2
1 1

11 21 01 2 11 2 21 2 01 2 11 22

d d
d d d d d
u u x x x x x
t t

α + α = β + γ + γ − β − β   	 (13)

In order to find a solution for proving the stability of the closed loop system and the negativity of the Lyapunov 
function, it is necessary to neglect some gains and fix other gains.

Then, putting γ21 = 0 and using from Eq. (6) the first and second derivative of u1 with Eq. (13) gives

	 11 2 2 2 2 21 2 2 2d 2 01 2 11 2( )( ) ( )( )da e x f a e x f e eα + − + α + − = −β − β 

     	 (14)

In the case of fixing α11 = 0 and α21 = a2, the derivative of the errors e2 is obtained; then, integrating it twice, with 
respect to time, gives

	
2 2d 2 01 2 11 2

0 0 0
d d d

t t t

e x f e e
 

+ − = −β ρ ρ − β ρ  ∫ ∫ ∫  	 (15)

Then

	
2 2 2d 01 2 11 2

0 0 0
d d d

t t t

e f x e e
 

= − − β ρ ρ − β ρ  ∫ ∫ ∫  	 (16)

One may get

	

2
2 1 1 2 1 1 2 2d 01 2 11 2

0 0 0
d d d

t t t
V e e a e f x e e

  
= −λ + + − − β ρ ρ − β ρ    ∫ ∫ ∫

 	 (17)

In order to guarantee that the derivative of the Lyapunov function is negative, the parameter β01, in addition to 
β11, must be chosen as β01 = δ01sgn(z01) and β11 = δ11sgn(z11), where 01 2 2

0
( )

t

z e e d= ρ ρ∫  and 11 2 2
0 0

d
t t

z e e d
 

= ρ ρ  ∫ ∫ , and where the 
gains δ01 is selected such that

	
01 01 2 1

0
sgn( ) ( )d  

t

z eδ ρ ρ > ∆∫ 	 (18)

with Δ1 ≥ |a1e1| + |f2(x) − ẋd2|.
At that time,

	

2
2 1 1 01 2 2 2 1 1 2 2d 11 2

0 0 0
d d d

t t t
V e e e e a e f x e

   
= −λ − β ρ ρ + + − − β ρ      ∫ ∫ ∫

 	 (19)
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As a result 2 0V ≤ . 
In the third step, defining the third Lyapunov function as 2

3 2 30.5V V e= + , the derivation of V3 is then  
obtained as

	 3 2 3 3V V e e= + 

 	 (20)

Defining the error e3 as follows e3 = x3 – x3d, we obtain its time derivative as ė3 = f3 + a3u2 – ẋ3d. 
Using the formula specified by Eq. (12) with corresponding variables u2, x3, and x3d, the input control u2 can be 

formulated as

	

2
2 2

12 22 02 3 12 3 22 3 02 3 12 32
d d
d d d d d
u u x x x x x
t t

+ = + + − −  α α β γ γ β β 	 (21)

Taking γ22 = 0 and substituting the first and second derivative of u2 extracted from Eq. (6) in Eq. (21),  
we obtain

	 12 3 3 3 3 22 3 3 3d 3 02 3 12 3( )( ) ( )( )da e x f a e x f e eα + − + α + − = −β − β 

     	 (22)

Putting α12 = 0 and α22 = a3, the derivative of the errors e3 is obtained; then, integrating ė3 twice, with respect to 
time, gives

	
3 3d 3 03 3 13 3

0 0 0
d d d

t t t
e x f e e

 
+ − = −β ρ ρ − β ρ  ∫ ∫ ∫  	 (23)

In that case 

	
3 3 3d 02 3 12 3

0 0 0
d d d

t t t
e f x e e

 
= − − β ρ ρ − β ρ  ∫ ∫ ∫  	 (24)

Thus, we can get 3V  as follows 

	
3 2 3 3 3d 02 3 12 3

0 0 0
d d d

t t t
V V e f x e e

  
= + − − β ρ ρ − β ρ    ∫ ∫ ∫ 

 	 (25)

To make 3V  negative, the parameters β02 and β12 can be taken as β02 = δ02sgn(z02) and β12 = δ12sgn(z12), with 
02 3 3

0
( )

t
z e e d= ρ ρ∫  and 12 3 3

0 0
d

t t
z e e d

 
= ρ ρ  ∫ ∫ .

Further, supposing that the gain δ02 is selected such that

	
02 02 3 2

0
sgn( ) ( )d

t
z eδ ρ ρ > ∆∫ 	 (26)

with Δ2 ≥ |f3(x) − ẋd3|, the resultant equation can be obtained as

	
3 2 02 3 3 3 3 3d 12 2

0 0 0
d d d

t t t
V V e e e f x e

   
= − β ρ ρ + − − β ρ      ∫ ∫ ∫ 

 	 (27)

After that, it is concluded that 3 0V ≤ .
In the fourth step, the Lyapunov function V4 is defined as

	
2

4 3 40.5V V e= + 	 (28)
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taking the derivation of V4 as 4 3 4 4V V e e= + 

 , where e4 = x4 –x4d; then 4 4 4 5 4de f a x x= + −  , so the derivative of  
V4 is

	 4 3 4 4 4 5 4d( )V V e f a x x= + + − 

 	 (29)

where e5 = x5 – x5d; at that time, the resulting derivatives of V4 are given as 4 3 4 4 4 5 5d 4d( ( ) )V V e f a e x x= + + + − 

 . 
Then, choosing

	
5d 4 4 2 4

4

1 ( )dx f x e
a

= − + − λ 	 (30)

we subsequently obtain 2
4 3 2 4 4 4 5V V e a e e= − λ +  . 

 Finally, in the fifth step, consider the Lyapunov function V5 as follows 2
5 4 50.5V V e= + . Its time derivative is given 

as 5 4 4 4V V e e= + 

 . 
By means of Eq. (12) and the assignable variables u3, x5 and x5d, the input control u3 can be expressed as

	

2
3 3

13 23 03 5 13 5 23 5 03 5 13 52
d d
d d d d d
u u x x x x x
t t

α + α = β + γ + γ − β − β   	 (31)

By putting γ23 = 0 and from Eq. (6) utilising the first and second derivatives of u3, exploiting it in Eq. (31)  
yields

	 13 5 5 5 5 23 5 5 5d 5 03 5 13 5( )( ) ( )( )da e x f a e x f e eα + − + α + − = −β − β 

     	 (32)

It is required to choose α13 = 0 and α23 = a5, to find the derivative of e5; subsequently, integrating it twice  
yields

	
5 5d 5 03 5 13 5

0 0 0
d d d

t t t
e x f e e

 
+ − = −β ρ ρ − β ρ  ∫ ∫ ∫  	 (33)

At that moment 

	
5 5 5d 03 5 13 5

0 0 0
d d d

t t t
e f x e e

 
= − − β ρ ρ − β ρ  ∫ ∫ ∫  	 (34)

Subsequently, 5V  become

	
5 4 5 4 4 5 5d 03 5 13 5

0 0 0
d d d

t t t
V V e a e f x e e

  
= + + − − β ρ ρ − β ρ    ∫ ∫ ∫ 

 	 (35)

Consider taking β03 = δ03sgn(z03) and β13 = δ13sgn(z13) with 03 5 5
0

( )
t

z e e d= ρ ρ∫  and 13 5 5
0 0

d
t t

z e e d
 

= ρ ρ  ∫ ∫ , where the gain δ03 
is selected such that

	
03 03 5 3

0
sgn( ) ( )d

t
z eδ ρ ρ > ∆∫ 	 (36)

where Δ3 ≥ |a4e4| + |f5(x) − ẋd5|. In that case 

	
5 4 03 5 5 5 4 4 5 5d 13 5

0 0 0
d d d

t t t

V V e e e a e f x e
   

= − β ρ ρ + + − − β ρ      ∫ ∫ ∫ 

 	 (37)
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Consequently, 5 0V ≤ ; and this allows us to conclude that all the signals in the system are asymptotically stable. 
where the nonlinear functions are as follows:

	 1 21 11 1 01 2 11 2 21 2 01 2 11 2(1 )( )d d dg u x x x x x= α −α + β + γ + γ − β − β     1 1 1 1d 1 1(1 )( )h a f x e= − + − λ 	

	 2 22 12 2 02 3 12 3 22 3 02 3 12 3(1 )( )d d dg u x x x x x= α −α + β + γ + γ − β − β    	

	 3 23 13 3 03 5 13 5 23 5 03 5 13 5(1 )( )d d dg u x x x x x= α −α + β + γ + γ − β − β     2 4 4 4 2 4(1 )( )dh a f x e= − + − λ 	  

5.	 Simulation Results and Analysis
In this section, the effectiveness of the proposed FTC method is confirmed through simulation.

The winding machine structural parameters are taken as:
t0 = 2 N, ρ = 800 kg/m3, b = 0.1 m, h = 1.2 × 10−4 m, 0.018 m ≤ R1 ≤ 0.1 m , R2 = 0.02 m, 0.018 m ≤ R3 ≤ 0.1 m,  
b1 = 5×10−3 Nm/rad/s, E = 1.5 × 107 N/m2, L1 = L2 = 1.2 m, J1 = J3 = 6.76×10−6 kg/m2, n1 = 1, J2 = 8.67×10−4 kg/m2,  
b2 = 6.5 × 10−3 Nm/rad/s, n2 = 1, b3 = 4.6 × 10−3 Nm/rad/s, n3 = 1. 

It is assumed that the desired outputs of web tensions are 10 N and the web velocity is 1rad/s. 
Our objective is to roll up the strip in an accurate way. This can be attained if the tensions t1 and t2 and the 

velocity v2 are mainly kept to their reference inputs. 
In order to illustrate that the proposed method can deal with various faults, the following two cases, the case of 

disturbance, and after that the case of sensor fault and uncertainty, are considered.
The improved performance given by the proposed controller can be shown by using an index I comprising the 

integral of square errors. It is given as follows. 

	
2 2 2

1 3 4
0 0 0

e (t) dt e (t) dt e (t) dtI
∞ ∞ ∞

= + +∫ ∫ ∫ 	 (38)

5.1.  First scenario: External disturbance
The goal of this scenario is to evaluate the winding machine performance. In this situation, external disturbances, 
which represent all external torque which increase or decrease the motors torque, are added at t = 40 s to the inputs 
of the first motor, and it is considered periodic d1 = 2 × cos(2 × t).

From Figure 4 and Table 1, by comparing the proposed controller and the conventional controller, it can be 
seen that the proposed controller gives the best performance, can compensate the effects of external disturbance, 
and can guarantee the asymptotic stability of the closed-loop system with good transient performance. It can be 
attained after a short settling time, with minor steady-state errors; in addition, it can make the tension and velocity 
track their desired trajectories with tolerable amplitude of control inputs, when the web-winding system suffers from 
disturbances.

5.2.  Second scenario: Sensor faults and uncertainty
In this situation, an uncertainty at t = 40 s is added to the system in the moment of inertia J1 of the first roll, with 40% 
of the nominal value due to factors related to the structure of the winding machine and the following abrupt fault fs 
which affects the second sensor:

	

1   40s 80s 
0   0s 40s s

t
f

t
< ≤

=  < ≤
	 (39)

When a sensor fault occurs, the faulty measurements directly corrupt the closed-loop behaviour. Moreover, 
the controller aims at cancelling the error between the measurement and its reference input. Figure 5 displays the 
system output tracking results. Evidently, the proposed FTC approach has the best performance under sensor fault 
and uncertainty. From the simulation results, it is apparent that the settling time is shortened and the control inputs 
are in the admissible amplitude. In contrast, the traditional approach is poor in performance. It is characterised by 
great settling time and large steady state errors.
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Fig. 4. Performance evaluation under the first scenario. (a) web tensions t1, (b) control inputs u1, (c) web velocities V2, (d) control inputs u2, (e) web 
tensions t2, (f) control inputs u3.

Table 1.  The performance comparison.

Parameters Backstepping RST-Backstepping

λλ= [λ1,λλ2]
δ0 = [δ01, δ02,δδ03]
δ1 = [δ11,δδ12,δδ13]

λ = [100,20]
λ = [100,20]
δ0 = [300,260,210]
δ1 = [316,267,213]

ts(s) = [ts1,ts2,ts3] ts = [2.94, 3.01, 3.1] ts = [1,1.1,1.14]

I 98.43 30.01
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To summarise, the designed FTC method has better performance for fault compensation of the web-winding 
system when the system suffers from sensor fault and uncertainty.

6.	 Conclusion
In this paper, the new version of backstepping for FTC problem in case of presence disturbance, uncertainty, 
and sensor fault has been proposed and analysed for real industrial web-winding systems. An effective control 

Fig. 5. Performance evaluation under the second scenario. (a) web tensions t1, (b) control inputs u1, (c) web velocities V2, (d) control inputs u2, (e) web 
tensions t2, (f) control inputs u3.
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strategy is proposed by means of the combined RST-backstepping method to ensure the rejection of any type of 
considered perturbations. The condition of asymptotic stability of the closed-loop system is proved by Lyapunov 
theorem. Finally, simulations results display a clear improvement in robustness and performance, this improvement 
is palpable in the quality of the signal, and the level of rejection of the affected perturbations confirm that the 
suggested technique not only rejects the disturbances and uncertainty but also guarantees that the system outputs 
can track the reference values in the presence of the considered faults. Future research will address the optimum 
design of the suggested control.
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