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1. Introduction
Time domain approach for average transients in a three-level DC–DC flying capacitor converter (FCC) was first 
described in detail in Reznikov et al. (2019). In that paper, the processes in “short” and “long” time were separated 
and the strict and detailed analysis was carried out for “long” time process. The paper introduced the definitions 
of partial and averaged transients and presented simple and accurate formulas for the transients of three-level 
FCC. In comparison with the three-level FCC, a four-level one potentially has smaller ripples for steady-state load 
current and capacitor voltages due to the higher number of output voltage levels. It was previously noted (Reznikov 
et al., 2019) that the frequency domain approach (Wilkinson et al., 2006a, 2006b; Yuang et al., 2001) leads to 
extremely cumbersome formulas that do not allow to trace the dependence of the transient characteristics on the 
FCC circuit, load and pulse width modulation (PWM) parameters. The time domain approach to natural balancing 
dynamics of a four-level FCC was first presented in Reznikov and Ruderman (2009). Owing to the conference 
paper size limitation, some main ideas were formulated briefly and declaratively. Partial transients for capacitors 
voltages (formulas (25) and (26) in Reznikov and Ruderman, 2009) are obtained using a simplified technique 
(Ruderman and Reznikov, 2010) without giving important details. The accurate load current average dynamics 
are not presented. In addition, there is no strict derivation of the average steady-state capacitor voltages. It should 
be noted that the resulting transients correspond to only one sequence of FCC switching topologies on a PWM 
period.

The purpose of this paper was to present a strict and detailed derivation of simple and accurate formulas for 
average transients that clearly show the dependences of the FCC circuit and PWM period parameters on the basis 
of ideas presented in Reznikov et al. (2019) for a three-level FCC.
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2. The Problem Formulation. Discrete Model
Figure 1a shows a four-level DC–DC FCC topology. The transient analysis is carried out under the assumptions 
accepted for a three-level FCC (Reznikov et al., 2019), namely, the load is represented as a series connection of 
inductance and resistor, the switches are bi-directional with zero resistance in the conductive state (ON) and infinite 
in the open-circuit one (OFF) and switching times are negligibly small.

Owing to the FCC symmetry, its operation will be analysed only for positive normalised voltage command D. For 
the four-level FCC carrier-based PWM (Reznikov and Ruderman, 2009), the switching sequences of complementary 
switch pairs −S1 S1, −S2 S2 and −S3 S3 differ for the two ranges of D, which are separated by D = 1/3. Therefore, the 
FCC operation is considered for large D, namely 1/3 ≤ D < 1, and small D, that is 0 ≤ D ≤ 1/3. This paper (Part 1) 
addresses FCC operation for large D.

The carrier-based PWM is discussed in detail in Reznikov and Ruderman (2009). A PWM period TPWM is divided 
into six successive time intervals Δt1,Δt2, Δt3, Δt4, Δt5, Δt6, each with its own equivalent circuit (with the number equal to 
the index of respective time interval). The time intervals with even (odd) indices have the same duration Δt2 = Δt4 = Δt6 
(Δt1 = Δt3 = Δt5).

Figure 1b shows FCC topologies for large D. Time intervals with even indices correspond to the same topology, 
so there are only four different types of topologies. The topologies are defined by the following switches states. 
In Topology 1, switches S3 and S2 are ON, and switch S1 is OFF. In Topology 3, switches S1 and S3 are ON, and 
switch S2 is OFF. In Topology 5, switches S1 and S2 are ON, and switch S3 is OFF. For Topologies 2, 4 and 6, all 
three switches S1, S2 and S3 are ON.

Any topology of Figure 1b is a linear circuit of either first or second order. This means that, given the values of 
inductance current iL and capacitor voltages of vC1

 and vC2
 at the beginning of time interval tk, one can obtain their 

values at the end of this interval by solving the corresponding linear differential equations. Let the state-space 
vector for the four-level FCC be =X t i t v t v t( ) ( ( ) ( ) ( ) )L C C

T
1 2

. Then, the matrix relation for time interval Δtk may be 
written as

	
( ) ( ) ( )+ ∆ = ∆ + ∆X t t A t X t B t V( )

2k k k k k 	 (1)

Fig. 1. Four-level FCC circuit (a) and its switched topologies (b). Large D case.
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where matrices Ak and vectors Bk are defined by topologies and durations of the respective time intervals. For the 
sake of simplicity, Ak and Bk arguments from now on will be omitted.

Writing down equation (1) subsequently for each of six PWM period TPWM intervals and accounting for the 
continuity of the state-space coordinates at the switching moments yield

	 + = +X t T A X t B V( ) ( ) /2(1)
PWM

(1) (1) (1) 	 (2)

where transient matrix A(1) and vector B(1) are defined as

	 =A A A A A A A(1)
6 5 4 3 2 1 	 (3)

	 ( )( )( )= + + + + +B A A A A A B B B B B B( )(1)
6 5 4 3 2 1 2 3 4 5 6 	 (4)

Equations similar to equation (2) can be obtained starting from any interval from the second to sixth. Then, the 
matrix and vector will be different from those of equations (3) and (4) by a cyclic permutation of indices of matrices 
Ak and vectors Bk. To establish a correspondence between the matrix and vector in equation (2) and the number 
of the initial interval, the superscript in parentheses equals to the number of the initial interval. A detailed analysis 
below assumes that the PWM period starts with the time interval 1.

The use of equation (2) (the discrete model of the FCC) assumes giving up the details of FCC behaviour within 
a PWM period. Using the terminology (Reznikov et al., 2019), the FCC behaviour in the “short” time is ignored, 
and the focus is put on the average behaviour in the “long” time by considering the FCC behaviour at the discrete 
moments tk. In accordance with the above, let us rewrite equation (2) as

	
( ) ( )= + = ++ +X t A X t B V t t T

2
, k k k k

(1)
1

(1) (1) (1)
1 PWM 	 (5)

As shown in Reznikov and Ruderman (2009), the durations of the time intervals for large D become

	
∆ = ∆ = ∆ =

−
t t t

D
T

1
21 3 5 PWM 	 (6)

	
∆ = ∆ = ∆ =

−
t t t

D
T

1/ 3
22 4 6 PWM 	 (7)

As matrices Ai and vectors Bi elements are the solutions of linear differential equations, they are expressed by 
functions cosωτ, sinωτ and exp(−ατ). For different topologies, ω equals to one of three values: ω α= −LC(1/ )   1 1

2 , 
ω α= −LC(1/ )  2 2

2 , ω α= + −C C LC C(( ) / )  3 2 1 2 1
2  and α = R L/(2 ). Let us use a small parameter introduced similar to 

Reznikov et al. (2019). Since during time intervals ∆t1,…, ∆t6 the state-space coordinates do not change much, any 
value ω1∆ti, ω2∆ti, ω3∆ti, α∆ti is small. It is convenient to choose as a small parameter the value β = ω − D T((1 | |)/2)1 PWM.  
As only positive D is considered, in the following, D is used instead of its absolute value. Let us use the following 
designations: ω ωτ α ω ωτ= −−s ( ) cos ( / )sin , ω ωτ α ω ωτ= ++s ( ) cos ( / )sin  and rc = C1/C2. After simple transformations, 
ω2 = k1ω1 and ω3 = k2ω1, where = + −k r r r(1 )c1

2 2  and = + +k r r(1 ) 1c2
2 . Denote also β β= −−w k k r k k( ) cos ( / )sin  and 

β β= ++w k k r k k( ) cos ( / ) sin . The above designations allow representing matrices Ak and vectors Bk in a compact form 
as functions of β.
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3. Eigenvalues
Let us expand the matrix Ai elements into series of β and multiply the matrices according to equation (3). The 
elements of the matrix product (3) are also presented in the form of series of β:

	
{ }= =

=

A aij i
j

(1) (1)
1
1

3

	 (8)
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β β
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+…a
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3
c c
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(1)

2 2 2 3
	 (16)

	

β
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+ +
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+…a
r r r D

D
1

2 (1 )(1 )
3(1 )

c
33
(1)

2 3
	 (17)

The matrix A(1) eigenvalues are the roots of characteristic polynomial p(λ) = det(A(1) − λE), where E is a unity  
3 × 3 matrix. All other transient matrices A(i), i = 2,3,4,5,6, will have the same eigenvalues, as they differ the matrix 
factors’ cyclic permutation. Calculation of the polynomial coefficients through the matrix elements and their 
expansion in a series of β leads to

	 λ λ λ λ= + + +p g g g( ) 3
1

2
2 3 	 (18)

where
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−
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−
+

−
+
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D
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with

	 ( ) ( )( )= + + − + − + −F D D D r D D D9 78 41 1 32 3 5 11c1
2 2 3 2

	 ( )( )( ) ( )= − + + + +F D D D r D2 1 9 30 25 16 3 1c2
2 2
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In Reznikov and Ruderman (2009), the polynomial roots are calculated by Cardano formulas that are quite 
cumbersome. In this paper, using the method described in Reznikov et al. (2019), the roots are sought in the form 
of a series in β:

	 λ β β β= + + + +…( ) ( ) ( ) ( )u u u u i
i i i i

0 1 2
2

3
3 	 (22)

The superscript i defines the root number and, in the case of a third-order polynomial, takes the values 1, 2 
and 3. Just as for the second-order polynomial Reznikov et al. (2019), the convergence of the series (22) is proved 
easily. Since the polynomial coefficients are represented by convergent series and Cardano formulas provide 
arithmetic operations with them, as well as raise to the power of 1/2 and 1/3, the series (22) converges.

Substitute equation (22) into equation (18) and equate the series to zero:

	 λ β β β β= + + + + +… =( ) ( ) ( ) ( ) ( )p c c c c c( ) 0i
i i i i i

0 1 2
2

3
3

4
4 	 (23)

Next, starting from lower powers, equate to zero the coefficients cj
i( ) and find consistently the roots expansion 

series coefficients. For c i0
( ) the equation is = − =c u( 1) 0i i

0
( )

0
( ) 3 . Hence, for any i, that is for all roots, =u 1i

0
( ) .  

Then, substituting the u i
0
( ) value into equation (22), =c 0i

1
( ) , =c 0i

2
( )  and = − − − =c u D u r D(( 1) 4 )/( 1) 0i i i

3
( )

1
( )

1
( )2

.  

First, consider = −u r D4 /( 1)1
(1) . After using the same operations, = −u r D8 /(1 )2

(1) 2 2 and 
= − + + + − + −u r r r D D r D(2 ( 48 (1 )(3 1)(1 ) (1 )))/(9(1 ))c3

(1) 2 2 2 3, which yields the first root series representation as
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9 1

c
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2 2
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3
4 	 (24)

To obtain the second root, consider the second value of u i
1
( ) for which =c 0i

3
( ) , namely, =u 01

(2) . Then 
= − +u j r r( (1 )/2) c2

(2) 2  and = − + + + −u D r r r D((3 1) (1 )(1 ))/(9(1 ))c3
(2) 2 . As the polynomial coefficients are real and the 

second root is complex, the third root is a complex conjugate to the second one and there is no need to seek it on 
separate. Thus, the second and the third roots are represented as

	
j
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1
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1 3 1 1
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c c
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+ + +

−
+ 	 (25)

Represent the complex conjugate roots λ2 and λ3 in an exponential form:

	 M j M jexp( ),  exp( ),2 3λ λ= ϕ = − ϕ 	 (26)

where the module M and argument ϕ are defined as follows:

	
λ λ β β
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From equation (27), we can observe that the module of the roots λ2 and λ3 is less than unity. As 
from equation (24), the root λ1 module is also less than unity, the system is stable, that is, its transients 
converge.
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4. Partial Transients of Natural Balancing Dynamics
Let us find the general solution of the system of difference equations (5). Since eigenvalues λ1, λ2 and λ3 are 
different, they correspond to the eigenfunctions λ k

1 , λ k
2  and λ k

3 , where k is a number of discrete time instant. For 
the three eigenvectors λ γ γ γΓ = ( )k T

1 1 1
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2
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3
(3) , one of each 

eigenvector coordinates can be chosen arbitrarily. Let us select γ = 11
(1) , γ = 11

(2)  and γ = 11
(3) . Then, the second and 

third eigenvector coordinates are found from the system of linear equations written in the matrix form:
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The system (29) is linear dependent, so no matter which equations are used for finding γ i
2
( ) and γ i

3
( ). Substituting 

in equation (29) in turn λ1, λ2 and λ3 and expanding the result into a series yield
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The general solution of equation (5) can be written as

	

λ γ

γ

λ γ

γ

λ γ

γ

( ) =



















+



















+



















( ) ( )

( )

( )

( )

( )

( )
X k Q Q Q

1 1 1
k k k1

1 1 2
1

3
1

2 2 2
2

3
2

3 3 2
3

3
3

	 (36)

where Q1, Q2 and Q3 are arbitrary constants.
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Using a general solution, let us find a particular solution of a homogeneous system, that is, a solution at zero 
supply voltage. For the initial time instant k = 0, let the inductor current value be i0, and the capacitors voltages ν10 
and ν20. Then, equation (36) can be rewritten as
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Solving the equation (37) with respect to Q1, Q2 and Q3 yields
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Using equation (26) for complex roots, rewriting the eigenfunctions in trigonometric form, we have

	 M k j kcos( ) sin( )k k
2,3 ∓ iλ ( )= ϕ ϕ 	 (41)

Substituting equations (38)–(40) into equation (37) and accounting for equation (41) yield

	
λ ϕ ϕ( ) ( ) ( )= + +i k F F M k F M kcos sinL
k k k

11 1 12 13 	 (42)

	
λ ϕ ϕ( ) ( ) ( )= + +v k F F M k F M kcos sinC
k k k

21 1 22 231
	 (43)
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To obtain a particular solution of a non-homogeneous system of equations (a partial transient process, according 
to the terminology used in Reznikov et al. (2019), that is, for the case of a non-zero supply voltage, it is necessary to 
find the steady-state values of the inductor current and capacitors’ voltages. These values exist because, as noted 
earlier, the system is stable.

First, find the vector B(1) using equation (4). By carrying out the operations in equation (4) and making a series 
expansion, vector B(1) is found as
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The steady-state values of the vector X(1) coordinates are found from equation (37), for k striving to ∞. Since the partial 
transient tends to 0, it is possible to equate vectors at tk+1 and tk for large k. Then, after denoting the desired vector X(1)(∞),

	 X A X B V / 2
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From equation (46), X(1)(∞) becomes
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By calculating vector X(1)(∞) and making a power series expansion, X(1)(∞) is found as
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	 (48)
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Using vector X(1) coordinates for k = ∞, the non-homogeneous system particular solution is obtained from 
equation (37) with the replacement in Q1, Q2 and Q3 initial conditions i0 by i0 − iL(∞), v10 by − ∞v v1 ( )C0 1

 and v20 by 
− ∞v v2 ( )C0 2

 and addition of the term X(1) (∞) on the right side.
An interesting specific case is making power-up for an FCC at zero initial conditions i0 = 0, v10 = 0 and v20 = 0. 

Corresponding calculations lead to the following expressions:
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where up to small values of the first order
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and iL(∞), ∞v ( )C1
 and ∞v ( )C2

 are taken from equation (48).
The found partial transient corresponds to the time interval 1 as the first one of the PWM period. Five other 

partial transients are calculated in a similar way using the matrices A(n) and vectors B(n) for n = 2,3,…,6. As 
mentioned earlier, these matrices and vectors differ from A(1) and B(1) by cyclic permutation of factor indices. 
For example, A(2) = A1A6A5A4A3A2 and B(2) = A1(A6(A5(A4(A3B2 + B3) + B4) + B5) + B6) + B1. Owing to the lack of space, 
only final results for the partial transient calculation will be presented. Let us introduce the auxiliary functions:
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Then
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where up to small values of the first order
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To complete the partial transients’ calculation, let us continue obtained functions from discrete points of time to 
the entire time axis. This process involves replacement of functions λk by exponents with decay factor σ = ln (λ)/TPWM 
and also replacement of trigonometric functions argument kϕ by Ωt, where Ω = ϕ/TPWM. Substitution of equation (24) 
for λ1 and equation (27) for M followed by a power series expansion yields the following expressions:
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5. Natural Balancing Dynamics
In accordance with the definition of the transient in the FCC given in Reznikov et al. (2019), it is necessary to find 
the arithmetic mean of all partial transients. Performing these simple calculations and also neglecting small values 
of order higher than the first lead to the following results:

	 σ σ= ∞ + + +i t i I t t I t I t( ) ( ) exp( ) exp( )( cosΩ sinΩ )L L 1 1 2 2 3
	 (57)
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σ σ= ∞ + + +v t v U t t U t U t( ) ( ) exp( ) exp( )( cosΩ sinΩ )C C 4 1 2 5 62 2

	 (59)
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Substituting instead of β, rc, r their values yields
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The found σ1 and σ2 values correspond to the time constants in Reznikov and Ruderman (2009) (formulas (20) 
and (24)).

6. Discussion
In Figures 2 and 3, simulation results are compared with theoretical ones for two sets of parameters: set 1 – L = 
0.0004 H, С1 = С2 = 0.0001 F, R = 1 Ω, TPWM = 0.0001 s, D = 0.5 and V = 100 V and set 2 – L = 0.0006 H, С1 = 0.0001 F,  
С2 = 0.0002 F, R = 0.8 Ω, TPWM = 0.0005 s, D = 0.8, V = 100 V.

Figures 2a and 3a show the graphs of the capacitors’ voltage simulation (the green curve for vC1
 and the light 

blue curve for vC2
) and the transition process calculated by the formulas (61) and (62) (the black curve). Figures 2b 

and 3b show similar curves for the inductor current. Black curve is calculated by formula (60). Magenta curves on 
all the pictures correspond to simulation curves filtered by a first-order filter with a time constant Tf. These curves 
serve as a reference for comparison with theoretical ones. For the voltage curves, the time constant was selected 
as Tf = TPWM, for the current curve – Tf = TPWM/2. All four figures show good agreement between the simulation and 
calculation results.

Despite the fact that we obtained the transients of the system of third order, in practice, the inductor current 
transient does not differ significantly of exponent curve and the transients of the capacitors voltages does not 
differ of oscillating curves modulated by exponent curve, that is the second-order process. The voltage exponent 
decays much slowly compared with the current one because for the set 1 of selected parameters, σ1 = −2500s−1 
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and σ2 = −5.425s−1 and for the set 2, σ1 = −1333s−1 and σ2 = −7.870s−1. The current steady-state value amounts to 
∞ = =i VD R( ) /(2 ) 25 AL  for the set 1 and ∞ =i ( ) 50 AL  for the set 2; the same is for voltages – ∞ = =v V( ) /3 33 VC1

 and 
∞ = =v V( ) 2 /3 67 VC2

 for the both sets.

7. Conclusion
The article presents the time domain analysis of the four-level DC–DC FCC for large values of reference voltage D.  
The curves corresponding to obtained formulas (60)–(62) on the graphs practically coincide with the accurate 
simulation ones in which oscillations in “short” time are averaged by the low-pass filter. Theoretical formulas  
(60)–(62) are very simple and at the same time accurately describe the “long”-time processes in the four-level FCC 
at large D values.

Fig. 2. The capacitors’ voltage transients (a) and the inductor current transient (b) for set 1.

Fig. 3. The capacitors’ voltage transients (a) and the inductor current transient (b) for set 2.
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