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1.	 Introduction
Modern industrial facilities, households, and electric vehicles are equipped with electrical drives (Nowopolski et al., 
2017; Szabat et al., 2020; Urbanski and Janiszewski, 2021) and mechanical working parts. Those mechatronics 
parts have a limited life time that decreases if not maintained correctly. Therefore, appropriate monitoring of 
electromechanical behaviour is crucial for extension of their lifetime. In addition, European policy has highlighted 
multiple aspects concerning this direction. The European industry 4.0 ‘describes the organisation of production 
processes based on technology and devices autonomously communicating with each other along the value 
chain’ (Smit et al., 2016; Teixeira and Tavares-Lehmann, 2022). The next step in European policy is Industry 5.0 
(Directorate-General for Research and Innovation [European Commission] et al., 2021), where key aspects, 
pertaining to the sustainability, human-centricity, and resilience of the European industry, are discussed. Two main 
aspects can be delivered: first, long usage of the mechatronic system with appropriate maintenance, and second, 
autonomous communication in the monitoring and maintenance process.

A popular method of investigation is based on frequency analysis of rotating machines (Brock et al., 2016; 
Han et al., 2022; Łuczak, 2021; Miletic et al., 2022; Peeters et al., 2018; Pindoriya et al., 2018; Ramteke et al., 2022; 
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Abstract:  �Modern industrial process and household equipment more often use direct drives. According to European policy, Industry 4.0 and new 
Industry 5.0 need to undertake the effort required to ensure a sustainable, human-centric, and resilient European industry. One of the 
main problems of rotating machines is mechanical vibrations that can limit the lifetime of the final product or the machine in which 
they are applied. Therefore, analysis of vibration in electrical drives is crucial for appropriate maintenance of the machine. The present 
article undertakes an analysis of vibration measured at the laboratory stand with multiple dominant frequencies in the range 50–500 
Hz. The fast Fourier transform (FFT) gives information about the frequency component without its time localisation. While the solution 
made available by the  short-time Fourier transform (STFT) is able to overcome the problem of FFT, it still has limitations, particularly 
in terms of there being a lacuna in time and frequency localisation; accordingly, the need is felt for other methods that can give a good 
localisation in time and frequency. In the article, the continuous wavelet transform (CWT) was investigated, which requires selection of 
the wavelet function (kernel of transformation). The complex Morlet wavelet was selected with description of its central frequency and 
bandwidth. CWT and STFT time-frequency localisation capabilities were compared to investigate data registered from the direct-drive 
laboratory stand. CWT gives better frequency localisation than STFT even for the same frequency resolution. Vibration frequencies 
with near-locations were separated in CWT and STFT joined them into one wide pick. To ensure a good extraction of frequency features 
in electric drive systems, the author, based on analysing the results of the present study, recommends that CWT with complex Morlet 
wavelet be used instead of STFT.
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Strakosch et al., 2021; Wszołek et al., 2020). The option that is mostly used is the fast Fourier transform (FFT) 
based on the radix-2 (Cooley and Tukey, 1965) or radix-4 algorithm (Corinthios et al., 1975); however, very often, 
there is no information available concerning the question which FFT algorithm has been employed (Duda et al., 
2021; Gong and Deng, 2022). The limitation of FFT analysis is the length of time window. Good frequency resolution 
requires a large number of samples and is related by /res sf f N= , where N indicates the signal length of the samples 
and sf  the sampling frequency. Another limitation is the lack of information concerning frequency change over time. 
This problem can be overcome by short-time Fourier transform (STFT), which performs FFT on overlapping time 
windows. However, this does not solve the frequency resolution problem because a long time window will lead to 
poor localisation of frequencies in time. Instead of time-frequency analysis, time-scale analysis can be applied to 
get good localisation both in time and scale (frequency). Continuous wavelet transform (CWT) allows for time-scale 
analysis and will be presented in the forthcoming section.

The frequency components of the analysed signal, as ascertained based on the application of FFT, can be seen 
in Figure 3 (right). However, this analysis does not provide an answer to the question of whether this is a single 
occurrence within the signal or if this component appears, as is possible, several times within the time domain. 
The prospect of discovering an answer to the above question brings out the need for a time-frequency analysis. 
However, when STFT was used, some frequencies that were seen in FFT were blurred in STFT (Figure 5). The 
author searches for other tools that can be used for this purpose to have good time and frequency localisation 
with less blurred frequency data. The CWT with an appropriate selected mother wavelet and appropriate selected 
parameters of the wavelet gives satisfactory results. The use of CWT with complex Morlet wavelet gives better 
results (Figure 7) than STFT.

2.	 Short-Time Fourier Transform
The STFT is a method that allows transforming a one-dimensional function of time into a two-dimensional 
function of frequency and time. The method uses a fixed-length time window, which is shifted through the 
analysed signal. For each time interval, an FFT is calculated. The process is repeated in the next collection 
of samples. The shift of time window in samples is a parameter that can be chosen. The time shift can also 
be considered as an overlap of a subsequent time window with the previous one. In the present study, the 
calculation of FFT was done after each new sample, which means K–1 overlap of the signal, where K is the 
time window length in samples. It means that the step size is equal to one sample. By default, the shape of the 
time window is a rectangle; however, other known shapes of window are recommended to be used to reduce 
spectrum leak-out. In the present study, the Keiser shape of the window was used. The STFT is calculated as  
follows:

	
( ) 2( , ) ( ) j f tF f f t w t e dtpt t

+∞
− ⋅

−∞

= ⋅ −∫ 	 (1)

where t indicates time shift parameter, f  frequency parameter, w(t) fixed-length time window, f(t) the function that 
is analysed, and F the result coefficients.

The resolution in time depends on the step size, which, in the present study, was selected as a single 
sample. However, the resolution in frequency is calculated in the same way as for FFT. Therefore, the length 
of the fixed-time window will decide the frequency resolution as follows: /res s Kf f= , where K indicates time 
window length in samples and sf  the sampling frequency. Selection of a long time window is appropriate for 
good frequency localisation, but the time localisation will be poor. In contrast, selection of a short time window 
will give poor frequency localisation, although time localisation will increase. Therefore, the selection of w(t) 
length is a compromise between good localisation in time or frequency. Additionally, application of technique 
of frequency resolution increment is made possible by extending the time window length by the lengths of 
samples whose value is zero. In the paper, K was equal to 1,024 samples (0.1024 s) and an additional 1,024 
zero samples were added. This gives an appropriate time localisation and frequency resolution given by  

10,000  = 4.8828 
1024 1024

=res
Hzf Hz

+
.
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3.	 Continuous Wavelet Transform
The CWT is a method that allows transforming a one-dimensional function of time into a two-dimensional function 
of scale and time. The main advantage of this approach is the scaling of the time window. This allows the precise 
selection of frequencies of the signal based on the scale of the window, which can be fitted to a period of the main 
signal component. The single period of the low-frequency and high-frequency components requires application of 
different time window sizes to capture it for all periods. CWT is an integral transform with a selectable kernel function 
Ψ. CWT is calculated as follows:

	

1( , ) ( ) t bW a b f t dt
aa

+∞

−∞

− = ⋅ Ψ  ∫ 	 (2)

where a indicates scale parameter, b shift parameter, Ψ complex-conjugate of the mother wavelet function, and f(t) 
the function that is analysed, namely W result coefficients. A detailed explanation of scale and shift influence can 
be found in Gao and Yan (2011). A mother wavelet function can be any function that satisfies kernel conditions, and 
therefore, answering to this description, Daubechies wavelets can be found in the literature (Daubechies, 1988), 
as also Gaussian wavelets, Shannon wavelets, Morlet wavelets, or complex Morlet wavelets (Teolis, 1998). The 
complex wavelet function MΨ  is defined by:

	

2

21( ) c b
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where fc denotes the centre frequency, and fb the variance (bandwidth). The kernel of MΨ  has two main parts, where 
the first is 2 cj f te p  that by Euler’s formula gives cos(2 ) sin(2 )c cf t j f tp p+  and is equivalent to the Fourier transform 
kernel. The second part is 2 / bt fe− , which can be treated as a time window shape equivalent to an envelope. As 
an example, a complex Morlet wavelet in the time and frequency domain is shown in Figure 1. The parameter 
fc is exactly the maximum frequency and fb is the inverse of the spectral width (the inverse of the variance in the 
frequency domain). The magnitude spectrum calculated of the real and imaginary parts are identical for the complex 
Morlet wavelet.

 The CWT result is a function of a, scale, and b, shift parameter, and therefore, it can be called a time-scale 
analysis. However, it is more useful to transform it from a time scale to a time frequency (time-pseudo frequency). 
The transformation from scale to pseudo-frequency is done by:

	
middle wavelet

pseudo
ff

a dt
=

⋅ 	 (4)

Fig. 1. Complex Morlet wavelet. Time domain with a shift of 2.5 s (left) and a magnitude spectrum of the real and imaginary parts of the wavelet (right).

67



Analysis of mechanical vibrations in direct drive

where fmiddle wavelet is the dominant frequency of the wavelet function and dt is the sampling time. The spectrum of 
wavelet function can contain more than one frequency component and only one dominant frequency is selected, 
and the remaining components are omitted; therefore, it is called pseudo-frequency. The dominant middle 
frequency of the complex Morlet wavelet is equal to fc. The resolution of pseudo-frequency depends directly on 
the selected scale a by application to Eq. (4). To compare STFT and CWT with the Morlet wavelet, the scale a was 
calculated after transformation of Eq. (4) into Eq. (5). The values of fpseudo were chosen as the same frequencies as  
in STFT.

	
middle wavelet

pseudo

fa
f dt

=
⋅

	 (5)

4.	 Direct Drive Laboratory Stand and Data Analysis
The direct drive laboratory stand is equipped with a Permanent Magnet Synchronous Motor (PMSM) electric 
motor, a control board with a Analog Devices Inc. SHARC®   signal microprocessor, a Pulse-Width Modulation 
(PWM) transistor inverter, and oscilloscopes. Raw measurement data can be collected in the microprocessor 
internal memory or through analogue outputs registered by the oscilloscope. In the present study, the 
registration in the internal memory of the microprocessor was used. The laboratory stand is presented in 
Figure 2. Analysis was done based on mechanical position Mq  measurements with excitation of ref

qi  current. 
The shape of the excitation signal was linear chirp (Luczak and Zawirski, 2015) in range of 50–500  Hz. 
Current ref

qi  forced the direct drive to vibrate in the given frequency range. Data were collected with a sampling 
frequency fs = 10,000 Hz. The measured velocity and its spectrum calculated by FFT are presented in Figure 3. 
The main frequencies of the vibrations are as follows: 80  Hz, 140  Hz, 156  Hz, 180  Hz, 277  Hz, and 400  Hz. 
Frequency analysis is a powerful tool; however, it does not give information on the time localisation of each  
frequency.

The data collected and presented in Figure 3 were transformed into time-frequency domain using 
the STFT method (Figure 4 [left] and Figure 5). The time window overlaps with the previous time window by 
window length (1,024 samples) minus 1. The frequency resolution of STFT is 4.88  Hz by the zero padding 
method. The result of STFT is the complex number coefficients of time and frequency. The modulus of 
complex numbers obtained resultant to the STFT is presented in Figures 4 (left) and 5. As a result of the STFT, 
a 3D chart is obtained (Figure 4 [left]), where the X-axis is time, the Y-axis is the frequency, and the Z-axis is 
modulus. View in the X–Y (time-frequency) axis allows analysing change of signal frequency components with 
respect to time and view in the Y–Z (frequency-module) axis allows investigating the frequency components. 
Time and frequency localisation is fair; however, in the Y–Z (frequency-module) axis, only frequencies with a 
wider frequency gap can be found for viewing. The main frequencies are as follows: 80  Hz, 180  Hz, 277  Hz,  
and 400 Hz.

The CWT result is similar to that obtained with STFT and is represented as a 3D graph in Figure 4 (right), 
where the X-axis is time, the Y-axis is the pseudo-frequency, and the Z-axis is modulus. The same raw data 
were transformed to time-scale domain by CWT with complex Morlet wavelet with fb = 4 and fc = 5, and scale 
was calculated by Eq. (4) from the given frequencies having the range 0.1–500.0 Hz with a 2 Hz step. The CWT 
are complex number coefficients of time and scale. However, scale can be transformed to fpseudo by Eq. (4), which 
gives a time-frequency chart. The modulus of the complex numbers of CWT result is presented in Figure 6. Time 
localisation obtained by CWT is similar to that by STFT. On the other hand, the frequency localisation obtained by 
CWT is better than STFT, as shown in Figure 6. The Y–Z axis view allows reading all main frequencies, which are 
as follows: 80 Hz, 140 Hz, 156 Hz, 180 Hz, 277 Hz, and 400 Hz. The frequency localisation of CWT is as good as 
that of FFT.

A better frequency localisation of the CWT can be achieved even if the frequency resolution of both methods 
is the same. Figures 4 and 7 (right) present the results of CWT analysis conducted with frequencies in the range 
0.1–500.0 Hz with a 4.88 Hz step. Due to the worse frequency resolution, the frequency of 156 Hz is not visible and 
is part of a wide 180 Hz peak; however, 140 Hz is still visible.

68



Łuczak 

Fig. 2. Direct drive laboratory stand and control schematic.

Fig. 3. Measured motor velocity (left) and its spectrum calculated by FFT (right). FFT, fast Fourier transform.
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Fig. 5. STFT analysis (4.88 Hz resolution) of the measured motor velocity (left) and its Y–Z axis view (right). STFT, short-time Fourier transform.

Fig. 6. CWT analysis (2 Hz resolution) of measured motor velocity (left) and its view of the Y–Z axis (right). CWT, continuous wavelet transform.

Fig. 4. STFT analysis (4.88 Hz resolution) of the measured motor velocity (left) and CWT analysis (4.88 Hz resolution) of the measured motor velocity 
(right). CWT, continuous wavelet transform; STFT, short-time Fourier transform.
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5.	 Discussion
Measurement data collected on a direct-drive laboratory stand were investigated by FFT, STFT, and CWT. FFT 
gives a good frequency localisation, although it does not facilitate ascertainment of the occurrence times. The 
FFT is appropriate if only information about frequency components is requested. However, information about 
time localisation is not present. This problem is solved by the time-frequency analysis. Easy-to-apply STFT with 
maximum time window overlap can give good time localisation; however, it has the disadvantage of frequency 
localisation. The STFT uses FFT on smaller fixed-length time windows, which leads to blurred frequency data. 
Therefore, a long fixed-length time window in STFT will give less blurred magnitude than a shorter fixed-length 
time window in STFT. Selection of time window length constitutes a trade-off between good localisation in time or 
frequency. If time window will be the same length as in FFT, it will give the same frequency data; however, there 
will be no time localisation. The key issue of STFT is fixed-length time window to calculate ( , )F ft . Another aspect 
is that F is calculated from a given time window for all f, which leads to new data on the Y–Z axis at the X-axis 
equal to t. The author searches for other tools that can be used for this purpose to have good time and frequency 
localisation with less blurred frequency data. Accordingly, the author proposes usage of CWT with complex Morlet 
wavelet, which gives good localisation in time and frequency. The CWT uses a varied-length time window (scaling 
of wavelet), which leads to less blurred frequency data. For each pseudo-frequency (scale a), a different wavelet 
length is used. If the scale a factor is large, the time window (wavelet) is long, which is appropriate for low-frequency 
components; on the other hand, if the scale a factor is small, the time window (wavelet) is short, which is appropriate 
for high-frequency components. The result of CWT is ( , )W a b . The convolution operation in time is used with a 
scaled wavelet corresponding to each scale a (pseudo-frequency), which leads to new data on the X–Z axis at 
Y-axis equal to scale a; accordingly, the frequency resolution can be selected based on scale a.

Other aspects of STFT and CWT include computational complexity, which depends on selected parameters 
and algorithms used for FFT. Computational complexity of STFT depends on: (1) selection of FFT algorithm e.g. 
radix-2 or radix-4, (2) length of fixed-time window, and (3) overlap of next time window with the previous one. The 
overlap of the long time window with K-1 samples will impose greater requirements on hardware in comparison 
with a similar phenomenon observed in the case of the shorter time window, which is characterised by fewer 
overlapped samples. The computational complexity of CWT depends on: (1) selection of convolution algorithm in 
time ( )( ) /f t t a∗ Ψ  or frequency equivalent ( ){ { ( )} { }}/IFFT FFT F tf t F T a⋅ Ψ  with fast inverse Fourier transform (IFFT), 
(2) shape and length of the mother wavelet, and (3) number of selected scales for which CWT will be calculated. The 
computational complexity test was performed in the MathWorks Matlab R2022b installed on a laptop (i7-4720HQ 
CPU up to 3.60 GHz, total cores: 4, total threads: 8; 16 GB RAM; Samsung SSD 850 PRO 256 GB). The time of 
STFT and CWT calculation was measured for a resolution of 4.88 Hz. CWT was calculated using the cwt() function 
defined in the MathWorks Wavelet Toolbox ver. 6.2, and STFT was calculated using the stft() function defined in the 

Fig. 7. CWT analysis (4.88 Hz resolution) of the measured motor velocity (left) and its view of the Y–Z axis (right). CWT, continuous wavelet transform.
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MathWorks Signal Processing Toolbox ver. 9.1. STFT was calculated in a time of about 0.2 s and CWT in a time 
of approximately 4.9 s. STFT was calculated about 25 times faster than CWT. The second test was performed for 
Python version 3.8.2 with SciPy and PyWavelets (Lee et al., 2019) software module. CWT was calculated using the 
pywt.cwt() function defined in PyWavelets ver. 1.1.1, and STFT was calculated using the scipy.signal.stft() function 
defined in SciPy ver. 1.7.1. STFT was calculated in a time of about 0.45 s and CWT in a time of approximately 5.6 s 
using time convolution and 0.8 s using frequency domain convolution. CWT implementation in PyWavelets using 
frequency domain convolution is about seven times faster than that using time convolution.

STFT and CWT methods were examined on real measurements’ data. The methods were compared in the 
region of interest from 50 Hz to 500 Hz. The selection of fb = 4 and fc = 5 has a crucial impact on the time-frequency 
localisation of the analysed signal. The author has selected both parameters of complex Morlet wavelet to achieve 
good localisation in time and pseudo-frequency.
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