A Review of Methods and Challenges for Improvement in Efficiency and Distance for Wireless Power Transfer Applications

Sokol Kuka, Kai Ni*, Mohammed Alkahtani

The Department of Electrical Engineering and Electronics, University of Liverpool, 9 Brownlow Hill, Liverpool L69 3GJ, United Kingdom

Abstract: Over the past few years, interest and research in wireless power transfer (WPT) have been rapidly incrementing, and as an effect, this is a remarkable technology in many electronic devices, electric vehicles and medical devices. However, most of the applications have been limited to very close distances because of efficiency concerns. Even though the inductive power transfer technique is becoming relatively mature, it has not shown near-field results more than a few metres away transmission. This review is focused on two fundamental aspects: the power efficiency and the transmission distance in WPT systems. Introducing the principles and the boundaries, scientific articles will be reviewed and discussed in terms of their methods and respective challenges. This paper also shows more important results in efficiency and distance obtained, clearly explaining the theory behind and obstacles to overcome. Furthermore, an overlook in other aspects and the latest research studies for this technology will be given. Moreover, new issues have been raised including safety and security.

Keywords: wireless power transfer • inductive power transfer technique • efficiency • distance • safety • security

1. Introduction

The use of wireless power transfer (WPT) for many electrical equipment is seen as powerful new technology. Delivering power through a long-distance is fascinating for the future. The wireless charging is identified as a great substitute of the wirings and batteries on many electrical devices. Wirings give enough power, but restrict the mobility and have safety issues. On the other hand, batteries offer great mobility but have initial high cost and limited life (Market Research Future, 2019). For these reasons, the WPT researches are very important and a big step forward has been made in recent years. They have a great number of applications, such as in electric vehicles (EV), where the maximum mileage run is strictly tied to the battery capacity. Increasing the number of batteries in each EV will be straight reflected in their price. Also, it is necessary to consider the amount of time spent on charging and anxiety for the users to run out of power.

To overcome these problems, fast wireless charging has been applied in vehicles for public transportation in the traditional stations (Musavi and Eberle, 2014). This type of application has itself a waiting time and short distance between stations that it has been easily adopted the WPT for electrical charging. Moreover, the researches for EV wireless charging while driving or parking (Zhang and Chau, 2015; Sato et al., 2016) are very attractive and boosting the market (Markets and Markets, 2019). Another example is the diffusion of the so-called consumer electronics. Presenting the problem of a limited duration of battery life, this sector has already seen commercial achievements of these WPT systems, especially for smartphones chargers. The advantages of employing a WPT system are certainly highlighted in implantable equipment for health care (RamRakhyani and Lazzi, 2013) although it is challenging to realize such applications because the power has to penetrate a dense medium like the skin. The wireless power delivery eliminates the need for transdermal or
percutaneous wires, which can be cumbersome and prone to infection. Packaged batteries can only power these implants for a fixed lifetime, based on functionality and usage (Campi et al., 2016), while surgical intervention is required each time to replace them. This leads to a smaller size and lighter weight or elimination of an energy storage element that brings comfort to the patient. In all these applications, the transmission distance plays a crucial role in the efficiency and consequently incorrect functionality of the application. If the EV, the electronic device and the implant are far enough to not receive a certain level of power, they will not be charged and will not be working. There are several ways in which energy could be transmitted, and they could be classified according to their working ranges, namely the far-field (long distance) and the near-field (short distance) transmission (Garnica et al., 2013). In the far-field range, the power is transmitted through microwaves and has been developed for low-power applications practically because of its low efficiency. The radio frequency (RF) signals have powered very low power application and it is more considered as a harvesting energy solution (Marian et al., 2012). The ultrasound waves have been utilised in similar applications (Charthad et al., 2015; Tsuji et al., 1993). They are converted through the piezoelectric effect as a transducer for the electrical signal. Although with low intensity, the light rays can transmit power. For instance, sun rays are possible to generate a large amount of energy despite travelling enormous distances. Similar to the other far-field sources, the power generation could happen certainly in particular conditions and vast size (Jarvis et al., 2013; Kimmich, 1982; Fakidis et al., 2016). Great use of this technique will be the solar farms in large areas of Saudi Arabia, which can generate up to 80 GWh of electricity per year (Almasoud and Gandayh, 2015). The near-field WPT is a better option because of the high power transmitted (Kim et al., 2018). It is physically based on the electric and magnetic fields (Dai and Ludois, 2015) created in capacitors layers, namely capacitive power transfer (CPT) and mutual inductors as inductive power transfer (IPT) (Balanis, 2005; Theodoridis, 2012) as shown in Fig. 1. The advantage of CPT is that it could be used efficiently for penetrating solid materials. However, their applications are limited because of the layer available area, the dielectric’s cost and the minimum distance between the electrodes. It has mostly been applied to low power devices (Ching and Wong, 2013). On the other hand, the IPT systems are based on the magnetic field link in mutually inducted coils. The IPT systems are divided into two categories, namely loosely coupled system (LCS) and tightly coupled system (TCS). In TCSs, the coupling factor (coefficient) $k$ is close to unity; therefore, the transferred power efficiency is quite high. A well-known application for TCS is a power transformer. In LCSs, the coupling factor is quite low; depending on the application, $k$ can range between 0.01 and 0.5 (Low et al., 2009). The reason for the low coupling factor is the absence of high permeable magnetic path between the coupled coils compared with the coil sizes.

![Diagram](image1)

**Fig. 1.** (a) IPT based on the magnetic field in mutual inductors. (b) CPT built with capacitive layers and the electric field created.

In the literature review on WPT, there are many articles and reviews about innovative studies of WPT for the inductive transmission. Scientific articles are more focused on emphasising an important achievement in the
WPT constraints like efficiency, distance, misalignment, power converters, electromagnetic interference (EMI), security, etc. On the other hand, reviews in WPT are often an overview of the all system (Zhang et al., 2019), or only a particular part such as the power converters adopted (Jiang et al., 2017a). Due to the emerging market of EVs, there is also a great interest in publishing papers about wireless charging of EVs, including dynamic and stationary charging EVs (Yang et al., 2018). In particular, the static ones are mostly reviewed, with great emphasis on their core and coil structures, and switching techniques (Wei et al., 2014; Jiang et al., 2017b). In the last year, a considerable amount of studies focused on WPT applications have been published. Although recent WPT reviews are reported, there is less reference in one of the most important aspects such as the maximum distance achieved in the applications (Abou Houran et al., 2018). In a WPT system, the possibility to achieve long distances is very attractive but at the same time, it is very difficult. This is a major issue, as the distance between transmitter and receiver increases the efficiency plummet down. High efficiency is the other most desired requirement. Many articles reported achievements in efficiency, but there are no reviews about efficiency–distance links and methods for increasing distances (Barman et al., 2015). Nevertheless, efficiency and distance are the immediate and commercially interesting values of a WPT system. Latest applications are shown in Fig. 2 and listed in Table 1 where the most important parameters are displayed. The topic is a recent trend of research and very extensive, thus a review for the whole topic becomes long and exhausting for the reader (Abou Houran et al., 2018; Liu et al., 2018).

Fig. 2. Relevant applications of wireless power transfer technique.

Table 1. Interesting examples of wireless power transfer applications followed by the year, power transmitted, frequency, efficiency and distance achieved

<table>
<thead>
<tr>
<th></th>
<th>Lithium battery</th>
<th>Rail transport</th>
<th>Pacemaker</th>
<th>EV</th>
<th>Autonomous robot</th>
<th>Power plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2018 (Jawad et al., 2018)</td>
<td>2018 (Reatti et al., 2018)</td>
<td>2018 (Campi et al., 2018)</td>
<td>2018 (Enes et al., 2018)</td>
<td>2018 (Tampubolon et al., 2018)</td>
<td>2018 (Choi et al., 2014a)</td>
</tr>
<tr>
<td>Power</td>
<td>5 W</td>
<td>27 kW</td>
<td>6.2 W</td>
<td>3.5 kW</td>
<td>1.5 kW</td>
<td>11.1 W</td>
</tr>
<tr>
<td>Frequency</td>
<td>1 MHz</td>
<td>25 kHz</td>
<td>4 MHz</td>
<td>85 kHz</td>
<td>120 kHz</td>
<td>20 kHz</td>
</tr>
<tr>
<td>Efficiency</td>
<td>53.08%</td>
<td>96.7%</td>
<td>73%</td>
<td>96%</td>
<td>80%</td>
<td>0.35%</td>
</tr>
<tr>
<td>Coil + Core size</td>
<td>30 cm</td>
<td>1.128 m</td>
<td>35 cm</td>
<td>50 cm</td>
<td>30 cm</td>
<td>2 m</td>
</tr>
<tr>
<td>Distance</td>
<td>15 cm</td>
<td>85 cm</td>
<td>30 cm</td>
<td>20 cm</td>
<td>75 cm</td>
<td>7 m</td>
</tr>
</tbody>
</table>

The purpose of this paper is to give a clear understanding about the power efficiency and distance of transmissions principles, latest research, issues and challenges to the readers. This paper categorises the latest results in efficiency and distance for WPT applications, review and discuss the issues and the challenges behind these achievements. This document is organised as follows:

- Section 2 is dedicated to efficiency. In the beginning, it will be given some basic principles of the WPT focused on some efficiency formulas. Later, the article starts considering the main components that affect efficiencies, such as the coil and the medium, the compensation network and the power converters.
- The transmission distance has been considered in Section 3 and has been classified and discussed based on the maximum range achievable: short range, medium range and long range where multi-coils systems have been analysed.
- In Section 4, a further brief review of other requirements for WPT systems is given.
- Finally, a conclusive discussion will end the paper in Section 5.
2. Principles of WPT

To begin with, a block diagram of a WPT system with the various components is shown in Fig. 3a. The system is composed of two parts: the power transmitter and the receiver. In the power transmitter section, the front-end alternating current (AC)–direct current (DC) rectifier converts the supplied AC voltage to a DC voltage to feed an inverter, which produces a high-frequency AC power output for the transmitter coil. When an AC is passing through a coil, referred to as the transmitter or primary coil, it generates an alternating magnetic field based on the Faraday’s law of induction. If another coil, referred to as the receiver or secondary coil, is placed near the transmitter, then the alternating magnetic field will induce a voltage in the receiver coil and a current will flow when there is a load connected to the coil. Therefore, power is being delivered inductively from the primary coil to the secondary coil.

An additional compensation or tuning network circuit is placed before the transmitting and receiving coil as a tuning block for the high-frequency AC. At this point, the high-frequency current flows through the primary coil where it is converted into a high-frequency alternating magnetic field and when it is detected by the receiving coil, it will be converted into a high-frequency alternating voltage. In the power receiver section, there is another compensation network which tunes the operating frequency matching the transmitter. If the load to be supplied is a DC, then the AC–DC rectifier converts the AC voltage from the resonant tank to the DC voltage, ready for LEDs or rechargeable
battery. Also, it is often necessary to add a regulator to keep the voltage stable when connected to a battery or load. As shown in Fig. 3a, the overall system is composed of different blocks with relative efficiency indicated in the picture. We can increase the overall $\eta_{\text{TOT}}$ only by increasing the efficiency $\eta_i$ of each block. In general, the efficiencies depend on the power electronic design, the topology of circuitry and their parasitic effect. Also, the magnetic link $\eta_{12}$ has the critical value of the overall efficiency and it is strictly related to the distance through the $k_{12}$ value. In additions, it also depends on outer diameter and quality factor of WPT systems. In the mutually coupled coils (often also indicated with “1” and “2”, respectively, primary and secondary), the higher is the coupling factor $k_{12}$ between them, the higher the efficiency $\eta_{12}$ of power is delivered to the load.

Further consideration of the coils shape design, which affects the self-inductances of the coils is explained in the next subsections. To the self-inductances of each coil, a third inductance exists between the two coils, which is referred to as the mutual inductance $M$:

$$M = K_{12} \sqrt{L_T L_R}$$ (1)

where $k_{12}$ is the coupling factor and $L_T$ and $L_R$ are self-inductances of the transmitter and receiver coil, respectively. A two-port equivalent analysis allows to find out significant expressions for the efficiency $\eta_{12}$ in a simple way. Considering the coils connected directly to an equivalent voltage source, it will be considered the Z-parameters of the block highlighted in blue shown in Fig. 3c. The resistances $R_T$ and $R_R$ are wire resistances of the coils, avoiding impedances from other blocks as illustrated previously in Fig. 3b. The system is evaluated as:

$$
\begin{vmatrix}
V_{\text{Source}} \\
V_{\text{Load}}
\end{vmatrix} =
\begin{vmatrix}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{vmatrix}
\begin{vmatrix}
I_1 \\
I_2
\end{vmatrix} =
\begin{vmatrix}
R_T + j\omega L_T & j\omega M \\
-j\omega M & R_R + j\omega L_R
\end{vmatrix}
\begin{vmatrix}
I_1 \\
I_2
\end{vmatrix}
$$ (2)

where the values for the Z-parameters are taken from the two-port network in Fig. 3c. The impedance seen by the power source inverter is a key parameter that directly contributes to the inverter, link, efficiencies of other blocks, along with voltage gain and maximum WPT. The input impedance $Z_{\text{in}}$ sought by the $V_{\text{source}}$ using Eq. (2) can be calculated as:

$$Z_{\text{in}} = Z_{11} - \frac{Z_{12}^2}{Z_{22} + Z_{\text{Load}}} = R_T + j\omega L_T + \frac{\omega^2 M^2}{R_R + j\omega L_R + Z_{\text{Load}}}$$ (3)

where the first part is the transmitter impedance. The second part of this impedance is an important value and it is also known as the impedance reflected from the receiver. Indicated with $Z_{\text{ref},T}$ this value is given by:

$$Z_{\text{ref},T} = \frac{\omega^2 M^2}{Z_2 + Z_{\text{Load}}} = \frac{\omega^2 k^2 L_T L_R}{Z_2 + Z_{\text{Load}}}$$ (4)

where $Z_2$ is the impedance of the receiver, which is the value of the coil self-impedance plus additional compensation network not shown in Fig. 2c. The efficiency or the operating power gain $G_p$ of an electric circuit is the ratio of power transferred to the load (considering the load pure resistive) from the power entering into the network. Thus, this gain is independent of the source impedance and is usually referred to as the power transmission efficiency $\eta_{12}$.

$$\eta_{12} = G_p = \frac{P_{\text{Load}}}{P_{\text{in}}} = \left| \frac{1}{I_1^2 \text{Re}\{Z_{\text{Load}}\}} \right| = \frac{R_{\text{Load}}}{R_T L_T^2 + \left( R_R + R_{\text{Load}} \right)^2} \left| 1 + \frac{R_T \left( R_R + R_{\text{Load}} \right)}{\omega^2 M^2} \right|$$ (5)
When the angular frequency $\omega_0$ at the system operating frequency $f_0$ is high enough, the denominator decreases and when:

$$\omega_0^2 \gg \frac{R_T (R_R + R_{Load})}{M^2}$$  \hspace{1cm} (6)

the efficiency is at its maximum value where $\eta_{12\text{max}}$ results:

$$\eta_{12\text{max}} = \frac{R_{Load}}{R_T \frac{L_R^2}{M^2} + (R_R + R_{Load})}$$  \hspace{1cm} (7)

Equation (6) introduces the importance of adopting a relatively high operating frequency at the power capability and is the most important specification for WPT applications (Kazmierkowski and Moradewicz, 2012; Sample et al., 2011). On the other hand, at the higher operating frequency, the power level is limited by the topology of power converters, parasitic, switching devices and related control mechanism. As seen in Eq. (4), the system depends on the type of the load $Z_{\text{Load}}$ which in optimal conditions (maximum efficiency) could be found in a derivation of Eq. (7) as:

$$\frac{\Delta \eta_{12}}{\delta R_{\text{Load}}} = 0 \rightarrow Z_{\text{Load,OPT}} = R_R \sqrt{1 + k_{12}^2 Q_T Q_R} - j \omega L_R$$  \hspace{1cm} (8)

where $Q_T = \frac{\omega L}{R_T}$ and $Q_R = \frac{\omega L}{R_R}$ represent the quality factors of the transmitter and receiver coils, respectively. To achieve the peak of efficiency [Eq. (8)] and have no reactive power on the load (zero phase angle (ZPA)), an impedance matching is required. In the compensation network, there is a capacitive impedance (a capacitor or a more complex circuit) to cancel the reactance $\omega L_R$. More alternatives will be given in Section 3.2. The formed LC resonant tank will give a pure resistive optimum load:

$$R_{\text{Load,OPT}} = R_R \sqrt{1 + k_{12}^2 Q_T Q_R}$$  \hspace{1cm} (9)

By substituting the resistive optimum load back into Eq. (5) and expressed in function of the coupling factor and quality factors, the maximum power transmission efficiency is given by:

$$\eta_{12\text{max}} = \frac{k_{12}^2 Q_T Q_R}{\left(1 + \sqrt{1 + k_{12}^2 Q_T Q_R}\right)^2} = \frac{\Delta}{\left(1 + \sqrt{1 + \Delta}\right)^2}$$  \hspace{1cm} (10)

where $\Delta = k_{12}^2 Q_T Q_R$, which is also called the figure of merit (FoM) of the system where maximum efficiency can be at least 17% when $\Delta$ is large than 1 (Kurs et al., 2007). And this condition is referred to as the strongly coupled resonance regime that is completely different from the coupling factor $k$. This is a method used in WPT applications where it is desired long distance in front of an acceptable power delivered. The WPT system is still loosely coupled but can operate in strongly coupled magnetic resonance regime, only if the quality factors $Q_T$ and $Q_R$ are designed to be enough high. Increasing $Q_T$ and $Q_R$ will keep a relatively good efficiency. Quality factors that can reach the value of 1000 or even higher. This value could be achieved by choosing designing coils with lower inner resistance (Onar et al., 2013) or a high-operating frequency and this method is introduced in Sections 4.1 and 4.2.
3. Distance in WPT Systems

The near-field transmission is also divided into two parts according to the wavelength $\lambda$; the reactive (non-radiative, mostly inductive) region and the radiative region (Umenei, 2019). The boundary between regions is commonly defined as the distance from the source to $0.159 \lambda$. In this way for operating frequency $f_0$ from 10 kHz to 1 GHz, it is possible to calculate the maximum physical distance reachable, which are boundaries of the reactive and radiative near-field regions. These values are listed in Table 2.

### Table 2. Theoretical maximum distance reachable by the WPT in the reactive and radiative region (Lee and Cho, 2013)

<table>
<thead>
<tr>
<th>Range–frequency</th>
<th>1 GHz</th>
<th>100 MHz</th>
<th>10 MHz</th>
<th>1 MHz</th>
<th>100 kHz</th>
<th>10 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactive region (m)</td>
<td>0 − 0.05</td>
<td>0 − 0.48</td>
<td>0 − 4.77</td>
<td>0 − 47.7</td>
<td>0 − 477.5</td>
<td>0 − 4775</td>
</tr>
<tr>
<td>Radiative region (m)</td>
<td>0.05 − 0.3</td>
<td>0.48 − 3</td>
<td>4.77 − 30</td>
<td>46.6 − 300</td>
<td>477.5 − 3000</td>
<td>4775 − 30,000</td>
</tr>
</tbody>
</table>

The reactive near field can be further classified into the short range and the middle range. The short range is realized when the distance between the coils is smaller than the size of the primary coil. Whereas, the middle range happens when the distance is at least 2–3 of the geometry of the devices (Kurs et al., 2007). This is not a strict definition, but the middle range distance is at least larger than the size (length or diameter) of the transmitter coil (Hui et al., 2014). For distances $d \gg r_T$ and $d \gg r_R$, the relationship among coupling factor, size and distance is shown in the following equation:

$$k_{12} = \frac{1}{2 \left( \frac{d}{\sqrt{r_T r_R}} \right)^3}$$

(11)

where $d$ is the distance between coils; $r_T$ and $r_R$ are the transmitter and receiver coil radius, respectively (Mur-Miranda et al., 2010). The transmission distances for these systems are all within a fraction of the geometry of the transmitter coil or pad. The reason is that the coupling coefficient between the coils decays as $1/d^3$ from the source coil in the near field. High efficiency is achieved when the distance is around the dimension of the coil. However, the system energy efficiency still falls rapidly when the transmission distance exceeds the dimension of the transmitter coil. Nonetheless, high efficiency can still be achieved by designing high-quality factor transmitter and receiver coils and by using a soft-switching power converter to lower the impedance of the power source. For instance with this method, using a transmitter (with radius $r_T = 15$ cm and quality factor $Q_T = 1270$) and a receiver (with radius $r_R = 10$ cm and quality factor $Q_R = 1100$), the system can transfer 105 W to the load over a distance of 30 cm with a system efficiency of 77% (Hui et al., 2014). If the distance far exceeds the size of the coils, the efficiency of the system will decrease rapidly because the coupling factor $k$ becomes too small. In Mur-Miranda et al. (2010), a pair of identical resonators with a quality factor of 1000 can transfer energy through a distance of nine times its radius, but the efficiency is reduced to 10%.

### 3.1 Short and medium range

The power transfer in short transmission distance is commonly achievable with good coupling factor, which depends on the medium between coils whether it is air or any material with permeability one or above. Also, the best coupling factor is obtained when the coils have the same dimensions, negligible gap and they are perfectly aligned. The alignment of the transmitter not correct with the receiver has been the first challenge to overcome in this technology. Therefore, the charging appliance is usually fabricated in a similar size to have a visible matching. Although the system efficiency and power transferred can be maximized, the following problems can arise in these systems:

- Cross-talking or localized charging happens if the transmitter is much larger than the receiver. The magnetic flux path should only occur between the transmitter coil and the receiver coil. Only the transmitter coil that is closest to the receiver is powered on with others around in standby mode. This type of WPT is mostly used on dynamic EV charging applications where power consumption by each transmitter coil can be monitored to roughly identify the position of the receiving coil.
The not alignment between primary–secondary coil is usually measured in degrees, from perfectly aligned 0° up to the coils orthogonally each other. Beyond the same size mentioned previously, another solution could be adopting a movable transmitter coil to align it at the position of the receiving coil, which is detected through certain sensors was once proposed by the Qi standard. The transmitter coil will be moved to the place right beneath the receiving coil. This solution has a great potential in the stationary EV charging because precisely adjusting the position of the vehicle is relatively difficult especially when the receiving coil is very small. A further solution is to make sure that the receiver coil position is constrained by the magnetic attraction or the incorporated mechanical guide.

Particular note should be taken for the misalignment in biomedical implants where the receiver has dimensions of millimetres, often not anchored and completely hidden inside the patient body. Moreover, the medium is not air but human issue: by taking into account the higher absorption rate, in Mirbozorgi et al. (2017) an optimal design scheme was proposed by using a large external transmitting coil, which can effectively energize the implant in the brain tissue. In the radiative near-field region for the millimetre-scale receiver, there are research applications as a cardiac implant (Galbraith et al., 1987; Ho et al., 2013). Relative high efficiencies can be obtained when the system operates in the low gigahertz range, which is suitable for the biomedical implantable system.

For medium-range applications, there is a vast amount of studies. Most of the literature is focused on the electric vehicle (EV) wireless charging. Recent articles and reviews on EV can be classified about their focus:

- Coil design, operating frequency and misalignment (Patil et al., 2018).
- Static versus dynamic charging and consideration on energy grid management (Ahmad et al., 2018).
- Power density, challenges and market trades off (Bosshard and Kolar, 2016).

### 3.2 Long range: multi-coil design

Multiple coils in the transmitter, receiver, or in the middle are adopted essentially for two main reasons: (a) more degrees of freedom to maximize the efficiency and desensitize the link gain versus coupling factor and (b) highly coupled transmitter-repeater or repeater-receiver link work greatly as impedance matching elements at both sides. Although this last configuration requires four or more coils, it offers a better efficiency–distance than a three coils system. For this reason, the three coil WPT is not very popular, unless the application has no space for additional coils.

Let us consider a four-coil resonator system with two intermediate repeaters coils called “2” and “3” where an impedance (capacitor) compensation $Z_2$ and $Z_3$ are connected to form LC resonators. As shown in Fig. 4, the transmitter and receiver are referred to as “1” and “4”, respectively. It has been considered the transmitter $R_T$ and the load impedance $Z_{load}$ having a relatively low-quality factor of $Q_T = Q_1$ and $Q_R = Q_4$. Considering only the parasitic resistance, much higher quality factor $Q_2$ and $Q_3$ can be achieved. With this new nomination, $k_{ij}$ will be much lower than $k_{12}$ and $k_{34}$ because the distance between the intermediate coils is usually larger than the dimensions of the coils. In this way, the cross-coupling effect could be neglected because of either the low-quality factor Q or the small coupling factor depicted in Fig. 4 in yellowish-green. Similar to the two-coil system, the FoM could be written as a generic $\Delta_{ij}$ for any two of the four coils:

$$\Delta_{ij} = k_{ij}^2 Q_i Q_j$$

(12)

calling $i$ and $j$ the number of the referred coils. An important equation to notice in the design of a multi-coils system comes from the impedance reflected from all coils to the primary transmitter. Considering Eq. (4) introduced in a two-coil system, it is possible to write for each coil the reflected impedance:

$$Z_{ref, 3} = \frac{\omega^2 k_{13}^2 L_1 L_3}{Z_4 + Z_{load}}$$

$$Z_{ref, 2} = \frac{\omega^2 k_{12}^2 L_1 L_2}{Z_3}$$

$$Z_{ref, 1} = \frac{\omega^2 k_{12}^2 L_1 L_2}{Z_2}$$

(13)
Combining these equations in the 13 last equation, it is possible to obtain the impedance reflected in the primary transmitter:

\[
Z_{\text{ref}, 1} = \frac{\omega^2 k_{12} L_1 L_2}{\omega^2 k_{23} L_2 L_3 + Z_2 + \frac{\omega^2 k_{34} L_3 L_4 + Z_3}{Z_4 + Z_{\text{Load}}}}
\] (14)

when simplifying we obtain:

\[
Z_{\text{ref}, 1} = \frac{\omega^2 \left(\frac{k_{12} k_{34}}{k_{23}}\right)^2 L_1 L_4}{Z_4 + Z_{\text{Load}}} = \frac{\omega^2 k_{TOT}^2 L_1 L_4}{Z_4 + Z_{\text{Load}}}
\] (15)

In this equation, we can notice that the reflected impedance of all system depends directly only by the total coupling factor and the value of receiver impedance. Moreover, the WPT system can be seen as an equivalent total coupling factor defined by:

\[
k_{\text{TOT}} = \frac{k_{12} k_{34}}{k_{23}}
\] (16)

It is a design rule making sure that the following condition can be met:

\[
k_{\text{TOT}} = \frac{k_{12} k_{34}}{k_{23}} = 1
\] (17)

the reflected load will be matched and we will have the maximum power transferred. In such a way, the four coils system creates a possibility to extend the distance from primary to the load using more and more coils. The transmission distance can be elongated keeping high total coupling factors even if the mutual coupling factor between the repeaters is very low. Additional intermediate coils with loose coupling between them are adopted in order to increase the total coupling factor between the transmitter and the receiver. In this method, the low coupling is advantageous. For example, even if the coefficient \(k_{23}\) between the intermediate coils is loosely coupled to 0.01 because of the long transmission distance, the equivalent coupling coefficient \(k_{\text{TOT}}\) of the whole system can still be adjusted to 1 when both \(k_{12}\) and \(k_{34}\) are considered strongly coupled set to 0.1.
However, the impedance matching such a system is not endowed with high overall efficiency because it is restricted by the merit factor given by Eq. (19). Nonetheless, the four-coil system still offers (in terms of efficiency–distance) a better solution rather than the two-coil systems when the distance is much bigger than the coil size. A similar system is reported by the Massachusetts Institute of Technology (MIT) research group which could deliver 60 W power over a distance of 2 m long (Kurs et al., 2007). The distance achieved is more than four times of the transmitter coil size (30 cm), albeit the efficiency 15% between the intermediate coils.

The major issue for the multi-coils system comes from the frequency splitting phenomenon, which has been studied in Sample et al. (2011). The reason is the relationship between coupling factor and distance considered in Eqs (4) and (18) for the impedance reflected. In other words, the mutual coupling factor $k$ is inversely proportional to the distance $d$, therefore increasing $d$ means decreasing $k$. To avoid the complication of frequency splitting, few adaptive matching methods based on frequency tracking have been introduced (Park et al., 2011; Hoang and Bien, 2012). Furthermore, it has been illustrated in Lee et al. (2015) that antiparallel resonance loops are adopted to cancel the effects of frequency splitting. Other researches have covered new areas, such as multiple transmitters (Ahn and Hong, 2013; Yoon and Ling, 2011) and multiple receivers (Cannon et al., 2009; Kim et al., 2010). However, because of the limitation of energy efficiency, it has been used only for low power WPT systems.

4. Latest Research Studies

The latest research studies can be classified into five groups as shown in Fig. 5. The most important factor in the WPT system is the coil geometry (structure), which helps to increase the distance and efficiency in any applications. As introduced in Eq. (10), one method is to increase the quality factors of the coils to improve the efficiency although low coupling factor. Later through the choice of compensation network, we can achieve maximum power transfer to the load as shown in Eq. (8). Also, there are some well-known methods of power conversion that improve efficiency.

![Fig. 5. Classification of the improvements in the latest research studies in IPT.](image-url)
4.1 Coil geometry and core

The coil design is an initial step in WPT system since it determines the value of self-inductance, which depends on the size, length, geometry, cross-sectional area, the separation between turns, number of turns and thickness or width of copper. The formula for several coils shape, like circular, square, rectangle, etc., is given in Thompson (1991) and Grover (2004). For on-chip design, the layout depends on different factors that are given in Mohan (1999). These formulas could be very complex. The most used on-chip coil shape is spiral (Pancake spiral coil), and the formula is given in Khan et al. (2017) as:

\[ L = \frac{N^2 r^2}{8 \pi r + 11 Di} \]  

(18)

where

\[ r = \frac{Di + N(W + S)}{2} \]  

(19)

In Eq. (19), \( L \) is the value of the inductance in \( \mu \text{H} \), \( N \) the number of turns, \( r \) is the average winding radius in inches which is calculated by the inner diameter wire \( Di \), diameter \( W \) and turn spacing \( S \) (all lengths measured in inches). There is a huge amount of articles published with different solution to improve the magnetic link. In general, the design of the magnetic link includes the study of many factors, such as the coil design, distance and the type of material and conductor used in them. In many occasions, the dimension and the shape of the coil are determined by the application itself. It is important to have classified in coils categories in:

- 2D planar coils that could have a shape of a circle (Sample et al., 2011; Zhang et al., 2017), square (Lu et al., 2016; Moon and Moon, 2016), rectangle (Ahn and Hong, 2014; Li et al., 2014), planar printed spiral coils (PSC) (Chen and Zhao, 2013; Jolani et al., 2014) pancake coils (Yi et al., 2015), octagon (Park et al., 2016) and a double D shape (DD) (Zhang et al., 2015a) for EV charging. Furthermore, the WPT system in the printed circuit board (PCB) (Mohan, 1999; Song et al., 2014; Kim et al., 2015b).
- 3D coils conical loop (Yang and Tsunekawa, 2014; Zhang et al., 2015c) and helix coils (Hadadtehrani et al., 2016) mostly for charging human implanted devices, bowl-shaped transmitter coils (Campi et al., 2016), cylindrical coils (Zhang et al., 2012) simply printed on the internal or plastic external ID cover.
- Ferrites materials in which core of the coils are made of. These are non-conventional materials in WPT application. For instance, aluminium is used in Song et al. (2014), or superconductors to increase the quality factor of the coils in Jeong et al. (2016).
- Cores that increase coupling factor with an E-shape and U-shape (Li et al., 2015a; Shin et al., 2014) or a dipole (Tampubolon et al., 2018) delivering power up to a 7-m distance. Furthermore, in transportation tracks are used as core (Kim et al., 2015a; Ko and Jang, 2013).

In previous studies, there are several attempts for varying distance to be solved. In this way, the compensation network built with a capacitor matrix could deal with the frequency mismatch caused by the varying transmission distance (Lim et al., 2014). To increase the efficiency of a WPT system modelling the density of the uniform magnetic flux, Chabalko and Sample (2014, 2015) fed the natural electromagnetic transmission energy of a metal form of the cave to different receivers placed in the air space. The results in Chabalko and Sample (2015) show that a 3.96-m test cavity can feed a receiver with a radius of 3.81 cm. The energy efficiency has increased by more than 50%. The authors of Chabalko and Sample (2015) and Mei et al. (2017) also study 3D WPT systems based on the hollow mode. A 3D WPT system has been proposed for biomedical implants by Mei et al. (2017), which develops a two-axis miniaturised coil in the receiver to reduce orientation sensitivity. When energy is delivered to a mouse that runs inside the cavity cage, 93.53% of efficiency is achieved. To realise a magnetic field in all directions, Jonah et al. (2013) used orthogonal coils in the three-axis to create an orientation insensitive receiver. The measurements and the analysis indicate energy efficiency over 60% inaccurate orientation of the receiver. Choi et al. (2016) used
Methods and challenges for improvement in WPT applications

A crossed dipole coil in an orthogonal phase to achieve 3D WPT. In this way, the insensitivity of the orientation is obtained and thanks to the 3D magnetic flux density produced.

Other methods are based on the correct choice of the medium whether it is possible. The magnetic core can be used to shape the flux path, increase the inductance, enhance the coupling and furthermore increment the distance. Although air is medium “par excellence” in WPT systems, it is important to discuss the medium because more applications are trying to adopt other solutions such as high permeability cores. Similarly to the current, the magnetic flux lines prefer the path of minimum reluctance or high permeability (the opposite of reluctance is permeability). Therefore, to increase the coupling and order the field the preferred medium to use would be a high permeable ferrite core (low reluctance). The most common ferrite materials adopted for are MnZn and NiZn (in the top part of Table 3). The first one has high permeability and high saturation flux density, while the NiZn ferrite has lower permeability and high bulk resistivity. The ferrite with high bulk resistivity reduces the induced eddy and displacement currents at higher frequencies enhancing not only the coupling factor and inductance but also the power dissipation. This makes the NiZn suitable to be used for frequencies above the megahertz (MHz). Table 3 also shows a comparison of common materials that could be used in future WPT system.

Table 3. Relative permeability list of many materials. Some of them are peak values which are obtained for a specific value of the magnetic field H and frequency indicated in the other columns. The value of the $\mu_R$ is a curve depending on the value of $H$. In bold the most common materials. For redundancy, values without explicit citation come from Cullity and Graham (2008).

<table>
<thead>
<tr>
<th>Medium of transmission</th>
<th>Relative permeability $\mu_R$</th>
<th>Magnetic Field</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical steel</td>
<td>4000 (C.R Nave Georgia State University, 2001)</td>
<td>0.002 T</td>
<td>100 kHz-1 MHz</td>
</tr>
<tr>
<td>Ferrite–MnZn</td>
<td>640</td>
<td>100 kHz-1 MHz</td>
<td></td>
</tr>
<tr>
<td>Ferrite–NiZn</td>
<td>16-640</td>
<td>100 kHz-1 MHz</td>
<td></td>
</tr>
<tr>
<td>Carbon steel</td>
<td>100 (Relative Permeability Hyperphysics, 2008)</td>
<td>0.002 T</td>
<td>1.00000037 (Cullity and Graham, 2008)</td>
</tr>
<tr>
<td>Air</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete (dry)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>0.9999994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>0.999992</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superconductors</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A decisive choice is also the layout of the coil. Reducing the coil winding resistance is an important step as it improves the quality factor and link efficiency thus the maximum distance achievable. Depending on the operating frequency, the winding conductor can be solid, foil, tubular or Litz. Solid wire is a building block of many types of wires, such as Litz, and understanding its behaviour is a critical step in the winding design. The power loss inside is due to the high-frequency eddy currents induced in it by the time-varying internal (skin effect) and external (proximity effect) magnetic field (Lee and Lorenz, 2013). At high frequencies mostly above a megahertz, the solid conductor (foil wire) can be superior to other conduct or types due to its low power loss, low cost and ease of manufacturing (Sullivan, 2013). The other advantages of using a foil conductor include high current-carrying capability due to large cross-sectional area and improved thermal performance. In this way, the inductors with low overall thickness can be designed. Copper foils with thickness close to skin depth in the multi megahertz frequency range (Cu skin depth is between 65 and 15 μm in the 1–20 MHz) are commercially available and affordable. Another way to reduce the AC resistance is the Litz wire (twisting strands): the conductor needs to be divided into multiple insulated skin depth sized strands, with each strand seeing the same amount of magnetic flux (Etemadrezaei and Lukic, 2016). This is a common choice of inductor wire at frequencies up to few megahertz, above which the need for very thin strands (close to skin depth) makes the manufacturing expensive. The complete structures of the coil, including the number of turns, layers, distance between them and existence of ferrite core, are the design parameters for minimising proximity effect and AC resistance.

Recently, an artificial material has been built by the scientific community with negative permeability and negative permittivity (Alphones and Sampath, 2015). This metamaterial named as left-handed material (Bilotti and Sevgi, 2012; Kim, 2009) possesses abilities to amplify the evanescent flux lines and concentrating the electromagnetic field. Therefore, the metamaterials exhibit greater potentials to enhance the efficiency and distance in WPT systems. Wang and Teo (2012) created WPT prototypes with various metamaterial topologies for comparison and
they achieved to light a 40 W bulb with distance 50 cm at 27.12 MHz. Later on, Ranaweera et al. (2014) proposed a 3D left-handed structure that has been for midrange WPT applications at 6.5 MHz, using also three turns spiral coils with negative permeability. This experiment shows that the power delivered can be improved by 33 and 7.3% in distances such as 1.0 and 1.5 m, respectively. Moreover, this paper matches the purpose of our paper where efficiency and distance improvements for WPT systems using 3D metamaterial topology, although the metamaterial is still a research topic and is not largely available. In a distance of 1.5 m, prototypes worked with double 3D metamaterial plates in proximity of the transmitter and receiver, precisely in the front (Choi and Seo, 2010) and back (Wu et al., 2013) of the coils showing an efficiency improvement up to 80%.

4.2 Compensation network

As shown previously, an important part of the design is the choice of the resonance frequency and the network topology adopted. The chosen frequency needs to be the same in both transmitter and receiver. It is also desirable that the current and voltage of the power source are in-phase, minimising the VA rating of the power supply. The easiest way is to make sure that the relationship for operating frequency \( f_0 \) is:

\[
\frac{1}{2 \pi \sqrt{L_C C}} = \frac{1}{2 \pi \sqrt{L_R C_R}}
\]

where the capacitors \( C_T \) and \( C_R \) are additional components that are usually added on both sides to resonate at the same operating frequency and the inductors with low overall thickness can be designed. This condition is referred to as tuned primary–secondary or transmitter–receiver. This is done by a compensation network depicted in Fig. 3a, which creates the resonance. The mismatching of the operating frequency due to parasitic leads to a slight reduction of the efficiency in the compensation network blocks and indicated for power transmitter and receiver as \( \eta_1 \) and \( \eta_2 \), respectively.

Depending on the type of the application, there are four basic compensation topologies without considering resonant circuits (Chen et al., 2013) intermediate coils (Pinuela et al., 2013) or other additional capacitance and resistance (Wang et al., 2015). These are the four basic topologies shown in Fig. 6, called the series–series (S–S), series–parallel (S–P), parallel–series (P–S) and parallel–parallel (P–P) type of circuits. In general, the secondary coil is chosen to resonate at in parallel or series. The parallel-type secondary has a voltage output type and is suitable for large loads. Furthermore, in this type, the coil parasitic capacitance can be included in the compensation capacitor in parallel. Nevertheless, the disadvantage is that resonant frequency depends on the value of load (for simplicity let consider the load resistive). The series-type secondary, on the other hand, has a current output type and is suitable for small values of resistive load. The choice of secondary compensation is mostly limited to the load requirements. The primary coil could have multiple configurations depending on the number of elements. The additional elements (capacitors and inductances) will be connected with the transmitting coil \( L_T \). The primary series needs a higher current and lower output voltage from the switched Metal–Oxide–Semiconductor Field-Effect Transistors (MOSFETs). In contrast, the primary parallel demands a higher voltage and a lower output current. In both cases, the higher values of current increase the MOSFET driver losses, and higher voltages increase the MOSFET capacitive losses. Because none of the basic four topologies can provide ZPA for constant current (CC) or constant voltage (CV) in WTP applications, advanced topologies have been proposed (Nguyen et al., 2017; Li et al., 2014) in the resonance–compensation network between the converter and the transmitting coil (Qu et al., 2017; Feng et al., 2016). In these hybrid topologies, an extra reactance is added to the circuit, which helps for a lower switching loss compared with the S or P topologies. However, the basic four topologies are still preferred for low-voltage WPT applications. Similarly to the transmitting side, the receiving side

![Fig. 6. The four basic topology for resonance and compensation network, namely (a) S–S, (b) S–P, (c) P–P and (d) P–S.](image)
could have several variations, which are referred to in capital letters such as primary–secondary topology. The configuration of circuits for WPT transfer is reviewed in a few recent papers (Jiang et al., 2017a; Abou Houran et al., 2018). The LCL hybrid configuration has shown in many articles to be the most used valid alternative to the basic topologies, and a very interesting correlation has been studied in Liu et al. (2016) where S-S and S-P are compared with the LCL-S, LCL-P, LCL–LCL and S-LCL, respectively in Fig. 7a–d. In voltage source inverters, which are widely employed in WPT system, the S-S, LCL-P and LCL–LCL topologies have shown a CC in output, whereas the S-P, S-LCL and LCL-S topologies have shown a constant output voltage. For these considerations, the ones with CC to the load such as the S-S, LCL-P and LCL–LCL topologies are good candidates for battery charging applications.

On the other hand, the S-P, S-LCL and LCL-S topologies are suitable for the electric appliances supplied by the power source of CVs. Also, the LCC topology proposed in Li et al. (2015a) can be simplified as an equivalent circuit similar to LCL topology when are driven by a sinusoidal voltage at the same operating frequency. As shown in Fig. 7f, the value of $L_{T-LCC}$, $L_{T1-LCC}$ and $C_{T2-LCC}$ could be written in function to $L_{T}$, $L_{T1}$, $C_{T2}$ and $C_{T1}$ in Fig. 7e. Therefore, the load characteristic of S-LCC, LCC-S, LCC-P and LCC-LCC (Fig. 7g) is the same as that of S-LCL, LCL-S, LCL-P and LCL–LCL, respectively, under steady-state at the same resonant frequency (Liu et al., 2016). A CCL-S hybrid topology introduced by Samanta and Rathore (2015), shown in Fig. 7h, reduces the inverter switch stress to the half of the conventional LC parallel resonant tank. Moreover, many other papers (Park et al., 2016; Lu et al., 2016) compare the characteristics of the double-sided LCC compensation topologies as considered the most suitable technology for electric vehicle (EV) wireless chargers. Wang et al. (2017) introduced the complementary S-CLC topology, in Fig. 7i, which in comparison with LCC–LCC needs fewer compensation components, meaning lower cost, smaller dimension and further greater potential in WPT applications.

Innovative compensation network for impedance matching has been shown in Chen et al. (2013). For a better performance in the distance and efficiency, Chen et al. (2013) presented a series–shunt mixed-resonant coupling in which parameters can be easily optimised for high transfer efficiency under different distances. To get the maximum power transfer, it has been analysed an LCL compensation network and inverter by Wang et al. (2004). The system was controlled by a variable frequency to find the optimal value of the inductances. In Villa et al.

Fig. 7. Hybrid resonant topologies highlighted: the LCL configuration (L is the inductor and C the capacitor added) with the receiver in (a) series, LCL-S (b) parallel, LCL-P (c) doubled and (d) at the receiver S-LCL; (e) The LCC configuration and (f) the equivalence with LCL when voltage is driven (Li et al., 2015a). Other relevant topologies such as (g) LCC–LCC, (h) CCL-S and (i) S-CLC.

On the other hand, the S-P, S-LCL and LCL-S topologies are suitable for the electric appliances supplied by the power source of CVs. Also, the LCC topology proposed in Li et al. (2015a) can be simplified as an equivalent circuit similar to LCL topology when are driven by a sinusoidal voltage at the same operating frequency. As shown in Fig. 7f, the value of $L_{T-LCC}$, $L_{T1-LCC}$ and $C_{T2-LCC}$ could be written in function to $L_{T}$, $L_{T1}$, $C_{T2}$ and $C_{T1}$ in Fig. 7e. Therefore, the load characteristic of S-LCC, LCC-S, LCC-P and LCC-LCC (Fig. 7g) is the same as that of S-LCL, LCL-S, LCL-P and LCL–LCL, respectively, under steady-state at the same resonant frequency (Liu et al., 2016). A CCL-S hybrid topology introduced by Samanta and Rathore (2015), shown in Fig. 7h, reduces the inverter switch stress to the half of the conventional LC parallel resonant tank. Moreover, many other papers (Park et al., 2016; Lu et al., 2016) compare the characteristics of the double-sided LCC compensation topologies as considered the most suitable technology for electric vehicle (EV) wireless chargers. Wang et al. (2017) introduced the complementary S-CLC topology, in Fig. 7i, which in comparison with LCC–LCC needs fewer compensation components, meaning lower cost, smaller dimension and further greater potential in WPT applications.

Innovative compensation network for impedance matching has been shown in Chen et al. (2013). For a better performance in the distance and efficiency, Chen et al. (2013) presented a series–shunt mixed-resonant coupling in which parameters can be easily optimised for high transfer efficiency under different distances. To get the maximum power transfer, it has been analysed an LCL compensation network and inverter by Wang et al. (2004). The system was controlled by a variable frequency to find the optimal value of the inductances. In Villa et al.
(2012), a WPT for electric public transport applications, Villa et al. (2012) proposed a series–parallel–series (SPS) topology showing good results in misalignment for both the load and the transmitter. Using various frequencies, Zhang et al. (2014a) provide the maximum efficiency adopting serial and parallel compensation techniques to any load. To obtain the maximum output power, a hybrid impedance tuning scheme was developed by combining the continuous and discontinuous conduction mode (CCM–DCM), which can effectively extend the adjusting range by Seo et al. (2016).

### 4.3 Power converters in WPT

An advantage of inductive WPT is in applications with small size and medium- to high-power requirements. As the magnetic link size reduces, the reflected resistance to the transmitter coil gets reduced as well. To compensate for this reduction, the operating frequency needs to increase to keep the power level up. For example, in electronic devices such as phones, wearable and laptops, the power rating can range from 1 W up to about a few hundred watts. For inductive WPT in the megahertz frequency region, the operating frequency is typically bound to industrial, scientific and medical (ISM) band of 6.78 MHz, 13.56 MHz, etc. The power converter design in the megahertz region is critical as the dynamic losses increase in the switches. There are several types typically used DC–AC power inverters such as classes A, B, AB, C, D (precisely DE) and E adopted in the megahertz frequency range. The most used inverters in the WPT power applications are on switched-mode class-D and class-E power inverters as they deliver the highest efficiencies.

Due to easy system parameter design, most of the WPT applications adopt Class D full- and half-bridge inverters (Huh et al., 2011), shown in Fig. 8. The Class D inverter employs two switches and a series–resonant LC tank, which results in lower switching frequency than the Class E inverter. This topology can output twice the DC supply voltage to feed the LC resonant circuit, especially suitable for low DC supply WPT applications. The Class D resonant inverter with two switches has lower voltage stress across the switch since the peak voltage is as high as the DC supply. One of the challenges of Class D inverter in the megahertz frequency range is the switch output capacitive losses during S2 turn-on. In recent papers, the half-bridge resonant inverter has been applied to the WPT system with frequency up to 13.56 MHz (Miller et al., 2015; Wang et al., 2005). The series (S) transmitter coil requires a high amount of current that increases switch gate driver losses. On the other hand, the parallel (P) reduces the current rating of the switches by circulating it through the resonant tank. However, it produces high voltages across the switches that increase the FET output capacitive losses. A combination of SP transmitter coil would take advantage of the low voltage rating of S and low current rating of P coils. Class E inverter satisfies these conditions with doubled-tuned output circuit (Wu et al., 2012b). In Fig. 9a, the basic schematic of a class-E inverter is shown. The inverter operates between the series resonance and the one in parallel with the C_S. The capacitor C_S is referred to as the shunt capacitor and it is also an important element to achieve the zero voltage switching (ZVS) and zero-derivative switching (ZDS) conditions. Inductance L_F is referred to as the DC-feed inductance. If this inductance is large enough, the input current I_L_F is approximately constant, which is equal to its DC component. Generally, the shunt capacitance C_S is realised by the sum of the external capacitance C_ext and the MOSFET drain-to-source parasitic capacitance C_DS, but this value is not usually controllable. Additionally, C_S decreases as the frequency increases. Therefore, C_DS is dominant to C_S at high frequencies. When V_g is high, on the top of Fig. 9b then the switch is ON, the voltage across the switch V_DS (bottom of Fig. 9b) is approximately zero (ZVS) and the current flows through the MOSFET. During the switch OFF interval, differences of currents through the DC-feed inductance and the resonant filter flow in the shunt capacitor. Not only can the Class E inverter operate at ZVS but also the voltage across the switch has a zero slope at the instant in which it is turned ON. This is referred to as ZDS. ZVS prevents the dissipation of the energy stored by the shunt capacitor when it turns on, and ZDS makes the circuit robust in the face of variations in the

![Fig. 8.](image-url) (a) Full-bridge inverter and (b) half-bridge inverter.
components, frequency and switching instants (Diekhans and Doncker, 2015; Sokal and Sokal, 1975). However, owing to its resonant operation principle, the device voltage and current stress are relatively higher than that for a full- or half-bridge inverter, which threatens the reliability of the device. To ensure the circuit reliability when implemented in a WPT system where the load and coupling coefficient are always changing, a switch with a maximum voltage rating of at least four times the input voltage may be required. Therefore, Class E inverter is only suitable for low power and low voltage IPT systems (Trung et al., 2015; Casanova et al., 2009). Enhanced gallium nitride (eGaN) device is often adopted to enhance the delivered power in the MHz frequency region (Choi et al., 2018).

5. Further Developments in WPT System

5.1 Maximum efficiency tracking and modulation

In addition to the research studies mentioned above, it is important to notice that component tolerance and ageing of inductors and capacitors can also decrease the system efficiency. For this reason, many studies are now focused on how to track variation of the efficiency and maximise it when variation from the nominal value occurs. Mai et al. (2018) tracked the maximum efficiency under varied loads. An active single-phase rectifier (ASPR) with an auxiliary measurement coil (AMC) was also proposed reaching 91.7% efficiency loading 800 W. An integrated dynamic coupling factor estimation analysis by Dai et al. (2018) has been adopted to model the low coupling factor with an enhanced method for the maximum efficiency tracking. In Li et al. (2015b), the system efficiency is maximised efficiency while regulating the output voltage. Thanks to a constant operating frequency, the maximum efficiency point on the voltage trajectory is tracked dynamically. Similarly, at 6.78 MHz a loosely coupled series–series resonant coils were also effective to have the maximum efficiency in Yeo et al. (2017). Another method for automatic efficiency tracking created by Zhong and Hui (2015) used the switched-mode converter in the receiver module to emulate the optimum load. This method searches for the minimum input power point for a given output power.

In Zhong and Hui (2018), the same authors proposed a switched mode DC–DC converter in the receiver circuit and an ON–OFF keying modulation to emulate an equivalent load resistance over a wide range of power load. This simple and effective method, although with some switching losses, can be applied to any SS resonant WPT
system. Lee et al. (2016b) used a multicycle Q-modulation that span across multiple carrier cycles. The system modulates the quality factor of the receiver coil and dynamically optimise the load to maximise the efficiency in two-coil system. In Li et al. (2018), it has been proposed a pulse density modulation (PDM) for maximum efficiency point tracking using the delta–sigma modulator with a dual-side soft switching. It is possible to avoid disadvantages of the complexity, power loss, hard switching, low average efficiency, DC voltage ripples and keep an efficiency over 70% in 0.5 m gap, which is 1.67 times the diameter of the coils.

5.2 Safety and security

In this part, we want to discuss the requirements for WPT systems that are becoming more important and will be developed in the next future. The improvement on transmission distance has guided the research in safety and security aspect is important. Questions about the safety of WPT system at home or stealing power from WPT sources are driving the research to some important points initially neglected. For this reason, more and more papers in the literature are focusing on safety and security improvements of WPT systems.

5.2.1 Safety

The human exposure to electric and magnetic fields in the transfer space must be considered in any WPT topology. The guideline for the level of electric field is 83 V/m and magnetic field is 21 A/m (Koohestani et al., 2017) recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) (Health Physics International Commission on Non-Ionizing Radiation Protection, 2010). Medium- and high-power WPT charging applications create high levels of field in the coils’ proximity, then the safety of people nearby the charger becomes a fundamental requirement. In a 20 kW EV dynamic charger with transmitters of 0.5 m × 1.5 m in series (Cirimele et al., 2017), the authors pulsed the magnetic field (developed according to the ICNIRP guidelines) at the frequency of 85 kHz. Only if a vehicle is above them, the system will transfer power. At the same frequency, the authors of Laakso et al. (2014) investigated 7-kW WPT adopting a computational modelling to the electromagnetic field to humans. Jo et al. (2014) have been shown a variation of the pulse width to reduce harmonics and leakage. Furthermore, Choi et al. (2014b) presented three methods such as independent self-cancellation, the 3-dB dominant cancel method and the linkage free cancel method. In addition, the authors have reported other techniques, such as separating pickup rectifiers and magnetic mirror methods. Moreover, many shielding materials were presented, such as ferrite, metallic (aluminium) (Kim et al., 2014; Wen and Huang, 2016) and metamaterials (Besnoff et al., 2016; Cho et al., 2017).

5.2.2 Security

The power encryption in WPT was initially applied in Zhang et al. (2014b) and Zhang et al. (2015d). The encryption of power supply is based on the variation of transmitting frequency making out of resonance other not allowed receiver. A chaotic variation of the capacitor array based on algorithm the variation of the frequency and matching with the receiver for the maximum power delivered. Hence, the transmitted power can be packed with different frequencies and delivered to the receiver in a specified slot of time.

6. Conclusions

This paper presents an overview of the achievements in methods for enhancing efficiency and distance in WPT applications. The methods for improving the efficiency are based on increasing the efficiency of each block that a WPT system is included. Furthermore, the efficiency could be improved by correctly designing the coil, the compensation network for the resonance in the transmitter and receiver with other possible improvements in the power converter topology. Moreover, issues and methods for short, medium and long distances have been shown with an analytical consideration for the four-coil system.

Referring to the latest research, the progress of power control, compensation network topologies, coil designs, new artificial material and the overall performance of wireless transmission (such as the power level, efficiency, transfer distance, safety and security) are significantly improved. We hope that researchers and engineers will be inspired by these cutting-edge advances, promoting further upgrade in the development of WPT systems and accelerating the trading of this technique.
References


Methods and challenges for improvement in WPT applications


Methods and challenges for improvement in WPT applications


